964 resultados para Anchorage implants
Resumo:
The aim of this study was to measure changes in buccal alveolar crestal bone levels after immediate placement and loading of dental implants with Morse taper prosthetic abutments after tooth extraction. This study followed the STROBE guidelines regarding prospective cohort studies. The sample comprised 12 patients with a mean age of 45 years, in whom a central or upper lateral incisor was indicated for extraction. Prior to extraction, computed tomography (CT) analysis was carried out to assess the presence of the buccal bone crest. CT scans were performed at 24 h and at 6 months after immediate implant placement and immediate loading. The distance from the most apical point of the implant platform to the buccal bone crest was assessed at the two time points. The buccal bone crest height was evaluated at three points in the mesio-distal direction: (1) the centre point of the alveolus, (2) 1 mm mesial to the centre point, and (3) 1 mm distal to the centre point. The values obtained were subjected to statistical analysis, comparing the distances from the bone crest to the implant platform for the two time points. After 6 months there was a statistically significant, non-uniform reduction in height at the level of the crest of the buccal bone in the cervical direction. It is concluded that the buccal bone crest of the immediate implants that replaced the maxillary incisors underwent apical resorption when subjected to immediate loading.
Resumo:
The aim of this systematic review was to identify clinical studies on implants placed in the tuberosity region to determine the survival rate of these implants when compared to implants placed in other regions of the maxilla. A search for data published up until March 2014 was undertaken using the PubMed, Cochrane Library, Embase, and ScienceDirect databases. Eligible studies were selected according to inclusion and exclusion criteria. The first database search revealed 310 titles. After inclusion and exclusion criteria were applied, five studies remained for the detailed analysis. A total of 113 patients were followed for a period of 6-144 months; 289 implants were placed in the patients evaluated. There were eight failures/losses of dental implants in the tuberosity region; the overall survival rate was 94.63% for these implants. In controlled studies, the cumulative survival rates for implants placed in the maxillary tuberosity and other maxillary regions were 96.1% and 95%, respectively. In conclusion, implants placed into the maxillary tuberosity are a predictable alternative for the treatment of patients with insufficient bone volume in the maxillary region. However, randomized trials are needed to assess the effectiveness of this treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In uncemented Ti6Al4V hip implants, the bone-stem interface is subjected to cyclic loading motion driven by the daily activities of the patients, which may lead to the complete failure of the implant in the long term. It may also compromise the proliferation and differentiation processes of osteoblastic cells (bone-forming cells). The main objective of this work is to approach for the first time the role of these organic materials on the bio-tribocorrosion mechanisms of cultured Ti6Al4V alloys. The colonized materials with MG63 osteoblastic-like cells were characterized through cell viability/proliferation and enzymatic activity. Tribocorrosion tests were performed under a reciprocating sliding configuration and low contact pressure. Electrochemical techniques were used to measure the corrosion kinetics of the system, under free potential conditions. All tests were performed at a controlled atmosphere. The morphology and topography of the wear scar were evaluated. The results showed that the presence of an osteoblastic cell layer on the implant surface significantly influences the tribocorrosion behavior of Ti6Al4V alloy. It was concluded that the cellular material was able to form an extra protective layer that inhibits further wear degradation of the alloy and decreases its corrosion tendency.
Resumo:
ObjectiveTo study the buccal dimensional tissue changes at oral implants following free gingival grafting, with or without including the keratin layer, performed at the time of implant installation into alveolar mucosa.Material and methodsThe mandibular premolars and first molars were extracted bilaterally in six Beagle dogs. In the right side of the mandible (Test), flaps were first elevated, and the buccal as well as part of the lingual masticatory mucosa was removed. An incision of the periosteum at the buccal aspect was performed to allow the flap to be coronally repositioned. Primary wound closure was obtained. In the left side, the masticatory (keratinized) mucosa was left in situ, and no sutures were applied (Control). After 3months of healing, absence of keratinized mucosa was confirmed at the test sites. Two recipient sites were prepared at each side of the mandible in the region of the third and fourth premolars. All implants were installed with the shoulder placed flush with the buccal alveolar bony crest, and abutments were connected to allow a non-submerged healing. Two free gingival mucosal grafts were harvested from the buccal region of the maxillary canines. One graft was left intact (gingival mucosal graft), while for the second, the epithelial layer was removed (gingival connective tissue graft). Subsequently, the grafts were fixed around the test implants in position of the third and fourth premolars, respectively. After 3months, the animals were euthanized and ground sections obtained.ResultsSimilar bony crest resorption and coronal extension of osseointegration were found at test and control sites. Moreover, similar dimensions of the peri-implant soft tissues were obtained at test and control sites.ConclusionsThe increase in the alveolar mucosal thickness by means of a gingival graft affected the peri-implant marginal bone resorption and soft tissue recession around implants. This resulted in outcomes that were similar to those at implants surrounded by masticatory mucosa, indicating that gingival grafting in the absence of keratinized mucosa around implants may reduce the resorption of the marginal crest and soft tissue recession.
Resumo:
ObjectiveTo study bone healing at implants installed with different insertion torques.Material and methodsIn six Labrador dogs, all mandibular premolars and first molars were extracted. After 4months of healing, flaps were elevated, and two implant sites were prepared at each side of the mandible. In the right side of the mandible, the distal sites were prepared conventionally, while the mesial sites were over-prepared by 0.2mm. As a consequence, a final insertion torque of similar to 30Ncm at the distal and a minimal insertion torque close to 0Ncm at the mesial sites were obtained. In the left sides of the mandible, however, the recipient sites were underprepared by 0.3mm resulting in an insertion torque of 70Ncm at both implants. Cover screws were applied, and flaps sutured to fully submerge the experimental sites. After 4months, the animals were sacrificed and ground sections obtained for histological evaluation.ResultsThe mineralized bone-to-implant contact was in the range of 55.2-62.1%, displaying the highest value at implants with similar to 30Ncm insertion torque and the lowest value at the implant sites with close to 0Ncm insertion torque. No statistically significant differences were revealed. Bone density was in the range of 43.4-54.9%, yielding the highest value at implants with 70Ncm insertion torque and the lowest at the implant sites with close to 0Ncm insertion torque. The difference between the sites of similar to 30Ncm and the corresponding 70Ncm insertion torque reached statistical significance.ConclusionsSimilar amounts of osseointegration were obtained irrespective of the insertion torque applied. Moreover, implants installed in sites with close to 0Ncm insertion torque may properly osseointegrate as well.
Resumo:
ObjectiveTo compare the sequential healing at immediately loaded implants installed in a healed alveolar bony ridge or immediately after tooth extraction.Material and methodsIn the mandible of 12 dogs, the second premolars were extracted. After 3months, the mesial roots of the third premolars were endodontically treated and the distal roots extracted. Implants were placed immediately into the extraction sockets (test) and in the second premolar region (control). Crowns were applied at the second and third maxillary premolars, and healing abutments of appropriate length were applied at both implants placed in the mandible and adapted to allow occlusal contacts with the crowns in the maxilla. The time of surgery and time of sacrifices were planned in such a way to obtain biopsies representing the healing after 1 and 2weeks and 1 and 3months. Ground sections were prepared for histological analyses.ResultsAt the control sites, a resorption of the buccal bone of 1mm was found after 1week and remained stable thereafter. At the test sites, the resorption was 0.4mm at 1-week period and further loss was observed after 1month. The height of the peri-implant soft tissue was 3.8mm both at test and control sites. Higher values of mineralized bone-to-implant contact and bone density were seen at the controls compared with the test sites. The differences, however, were not statistically significant.ConclusionsDifferent patterns of sequential early healing were found at implants installed in healed alveolar bone or in alveolar sockets immediately after tooth extractions. However, three months after implant installation, no statistically significant differences were found for the hard- and soft-tissue dimensions.
Resumo:
AimTo evaluate prospectively the clinical and radiographic outcomes after 5years of early loading of 6-mm implants with a moderately rough (SLActive((R))) surface supporting single crowns in the posterior regions.Material and methodsThirty-five consecutive patients received 40 SLActive((R)) (Straumann) 6-mm implants with a diameter of 4.1mm (n=19) or 4.8mm (n=21). Insertion torque and resonance frequency analysis (RFA) were measured at implant installation. RFA was also measured at abutment connection. SynOcta abutments were tightened with 35Ncm after 6weeks of healing, and single porcelain fuse to metal crowns was cemented within 1week. Implant survival rate and marginal bone loss were evaluated at various time intervals until 5years after loading. The clinical crown/implant ratio was calculated as well.ResultsTwo of 40 implants were lost before loading (incorporation rate 95%), and no further implant loss or technical complications were encountered during the 5-year follow-up period. A mean marginal bone loss of 0.70.6mm was found after 5years of function. The clinical crown/implant ratio increased with time from 1.6 at the delivery of the prosthesis to 2 after 5years of loading.ConclusionSix millimeter implants with a SLActive((R)) moderately rough surface supporting single crowns in the posterior region and loaded after 6-7weeks maintained full function for at least 5year with low marginal bone resorption.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Treatment of severe compromised tooth in the maxillary anterior area still poses great challenge to the clinicians. Several treatment modalities have been proposed to restore the function and aesthetics in teeth with advanced periodontal disease. The present study aims to report a case of traumatic injury of a left-maxillary central incisor with ridge preservation, orthodontic movement, and implant therapy. A 45-year-old woman underwent the proposed treatment for her left central incisor: basic periodontal therapy, xenogenous bone graft, and guided bone regeneration (GBR). Six months after the graft procedure, orthodontic movement by means of alignment and leveling was made and a coronal displacement of the gingival margin and vertical bone apposition could be observed after 13 months of active movement. Afterwards, a dental implant was placed followed by a connective tissue graft and immediate provisionalization of the crown. In conclusion, orthodontic movement was effective to improve the gingival tissue and alveolar bone prior to implant placement favoring the aesthetic results. Six years postoperatively, the results revealed height and width alveolar bone gain indicating that the treatment proposed was able to restore all the functional and aesthetic parameters.
Resumo:
The purpose of this study was to analyze the bone repair around commercially pure titanium implants with rough and porous surface, fabricated using powder metallurgy technique, after their insertion in tibiae of rabbits. Seven male rabbits were used. Each animal received 3 porous-surface implants in the left tibia and 3 rough-surface implants in the right tibia. The rabbits were sacrificed 4 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological and histomorphometric analyses to evaluate new bone formation at the implant-bone interface. Means (%) of bone neoformation obtained in the histomorphometric analysis were compared by Student's t-test for paired samples at 5% significance level.. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. The histomorphometric analysis revealed means of new bone formation at implant-bone interface of 79.69 ± 1.00% and 65.05 ± 1.23% for the porous- and rough-surface implants, respectively. Statistically significant difference was observed between the two types of implants with respect to the amount new bone formation (p<0.05). In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area at implant-bone interface.
Resumo:
This study investigated the biomechanical behavior of screwed partial fixed prosthesis supported by implants with different diameters (2.5 mm; 3.3 mm and 3.75 mm) by using a photoelastic analysis. Six photoelastic models were fabricated in PL-2 resin as single crowns or splinted 3-unit piece. Models were positioned in a circular polariscope and 100-N axial and oblique (45 degrees) loads were applied in the occlusal surface of the crowns by using a universal testing machine (EMIC). The stresses were photographically recorded and qualitatively analyzed using a software (Adobe Photoshop). Under axial loading, the number of fringes was inversely proportional to the diameter of the implants in the single crown models. In the splinted 3-unit piece, the 3.75-mm implant promoted lower number of fringes regardless of loading area application. Under oblique loading, a slight increase of fringes number was observed for all groups. The standard implant diameter promoted better stress distribution than the narrow and mini diameter implants. Additionally, the splinted crowns showed a more uniform stress distribution.
Resumo:
Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings.