939 resultados para Anatase TiO
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
Nanostructured materials have been spreading successfully over past years due its size and unusual properties, resulting in an exponential growth of research activities devoted to nanoscience and nanotechnology, which has stimulated the search for different methods to control main properties of nanomaterials and make them suitable for applications with high added value. In the late 90 s an alternative and low cost method was proposed from alkaline hydrothermal synthesis of nanotubes. Based on this context, the objective of this work was to prepare different materials based on TiO2 anatase using hydrothermal synthesis method proposed by Kasuga and submit them to an acid wash treatment, in order to check the structural behavior of final samples. They were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), adsorption/desorption of N2, thermal analysis (TG/DTA) and various spectroscopic methods such as absorption spectroscopy in the infrared (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All the information of characterizations confirmed the complete conversion of anatase TiO2 in nanotubes titanates (TTNT). Observing the influence of acid washing treatment in titanates structure, it was concluded that the nanotubes are formed during heat treatment, the sample which was not subjected to this process also achieved a complete phase transformation, as showed in crystallography and morphology results, however the surface area of them practically doubled after the acid washing. By spectroscopy was performed a discussion about chemical composition of these titanates, obtaining relevant results. Finally, it was observed that the products obtained in this work are potential materials for various applications in adsorption, catalysis and photocatalysis, showing great promise in CO2 capture
Resumo:
Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.
Resumo:
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N-2 adsorption at 77 K, X-ray Diffractometry (XRD), Scanning Electronic Microscopy (SEM/EDX) and Fourier Transform Infrared Spectroscopy (FT-IR). The surface area increases with the vanadia loading from 24 m(2) g(-1) for pure TiO2 to 87 m(2) g(-1) for 9 wt% of V2O5. The rutile form is predominant for pure TiO2 but becomes enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the diffractograms of the catalysts. Analysis by SEM showed heterogeneous granulation of particles with high vanadium dispersion. Two species of surface vanadium were observed by FT-IR spectroscopy: a monomeric vanadyl and polymeric vanadates. The vanadyl/vanadate ratio remains practically constant. Ethanol oxidation was used as a catalytic test in a temperature range from 350 to 560 K. The catalytic activity starts around 380 K. For the sample with 9 wt% of vanadia, the conversion of ethanol into acetaldehyde as the main product was approximately 90% at 473 K.
Resumo:
A series of V2O5/TiO2 samples was synthesized by sol-gel and impregnation methods with different contents of vanadia. These samples were characterized by x-ray diffraction (XRD), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and electronic paramagnetic resonance (EPR). XRD detected rutile as the predominant phase for pure TiO2 prepared by the sol-gel method. The structure changed to anatase when the vanadia loading was increased. Also, anatase was the predominant phase for samples obtained by the impregnation method. Raman measurements identified two species of surface vanadium: monomeric vanadyl (V4+) and polymeric vanadates (V5+). XPS results indicated that Ti ions were in octahedral position surrounded by oxygen ions. The V/Ti atomic ratios showed that V ions were highly dispersed on the vanadia/titania surface obtained by the sol-gel method. EPR analysis detected three V4+ ion types: two of them were located in axially symmetric sites substituting for Ti4+ ions in the rutile structure, and the third one was characterized by magnetically interacting V4+ ions in the form of pairs or clusters. A partial oxidation of V4+ to V5+ was evident from EPR analysis for materials with higher concentrations of vanadium. (C) 2001 American Vacuum Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)