984 resultados para Alveolar Bone Resorption
Resumo:
Bone remodeling depends on the spatial and temporal coupling of bone formation by osteoblasts and bone resorption by osteoclasts; however, the molecular basis of these inductive interactions is unknown. We have previously shown that osteoblastic overexpression of TGF-β2 in transgenic mice deregulates bone remodeling and leads to an age-dependent loss of bone mass that resembles high-turnover osteoporosis in humans. This phenotype implicates TGF-β2 as a physiological regulator of bone remodeling and raises the question of how this single secreted factor regulates the functions of osteoblasts and osteoclasts and coordinates their opposing activities in vivo. To gain insight into the physiological role of TGF-β in bone remodeling, we have now characterized the responses of osteoblasts to TGF-β in these transgenic mice. We took advantage of the ability of alendronate to specifically inhibit bone resorption, the lack of osteoclast activity in c-fos−/− mice, and a new transgenic mouse line that expresses a dominant-negative form of the type II TGF-β receptor in osteoblasts. Our results show that TGF-β directly increases the steady-state rate of osteoblastic differentiation from osteoprogenitor cell to terminally differentiated osteocyte and thereby increases the final density of osteocytes embedded within bone matrix. Mice overexpressing TGF-β2 also have increased rates of bone matrix formation; however, this activity does not result from a direct effect of TGF-β on osteoblasts, but is more likely a homeostatic response to the increase in bone resorption caused by TGF-β. Lastly, we find that osteoclastic activity contributes to the TGF-β–induced increase in osteoblast differentiation at sites of bone resorption. These results suggest that TGF-β is a physiological regulator of osteoblast differentiation and acts as a central component of the coupling of bone formation to resorption during bone remodeling.
Resumo:
We have generated RANK (receptor activator of NF-κB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK−/− mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1−/− (recombinase activating gene 1) mice, indicating that RANK−/− mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK−/− mice without inducing hypercalcemia, although tumor necrosis factor α treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK−/− mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.
Resumo:
The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.
Resumo:
The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.
Resumo:
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.
Resumo:
Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2(-/-) anabolic pathways in modulating bone formation. Introduction: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient oblob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. Materials and Methods: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2(-/-) oblob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2(-/-) mice. Cancellous bone volume and bone cell function were assessed. Results: Osteoblast activity was comparably elevated in oblob, Y2(-/-), and Y2(-/-) oblob mice. However, greater bone resorption in oblob and Y2(-/-) oblob mice reduced cancellous bone volume compared with Y2(-/-). Both wildtype and Y2(-/-) AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2(-/-) AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. Conclusions: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2(-/-) pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.
Resumo:
Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.
Resumo:
Este estudo investigou os efeitos do laser de baixa intensidade na velocidade da movimentação ortodôntica de caninos submetidos à retração inicial. A amostra constou de 26 caninos superiores e inferiores, submetidos à retração inicial realizada com mola Niti, com força de 150g. Um dos caninos foi irradiado com laser de diodo, seguindo o protocolo de aplicação: 780nm/20mW/5Jcm2/0,2J por ponto/Et=2J, nos dias 0, 3 e 7 pós-ativação, sendo que o contralateral foi considerado placebo. A retração durou em média 4 meses, num total de 9 aplicações de laser. Os modelos de cada mês foram escaneados com scanner 3D (3Shape) e as imagens tridimensionais foram analisadas por meio do Software Geomagic Studio 5, para a mensuração da quantidade de movimentação dos caninos retraídos. Foi empregada a Análise de Variância a três critérios, seguida pelo teste de Tukey (p<0,05). Para verificação da integridade tecidual, foram efetuadas radiografias periapicais iniciais e finais dos caninos retraídos e dos molares, nas quais foram avaliados uma possível reabsorção na crista alveolar, por meio da distância da crista óssea alveolar até a junção cemento-esmalte e os níveis de reabsorção radicular, por meio do índice de Levander e Malmgreen, sendo este último avaliado somente nos caninos retraídos. Para isto, foi empregado o teste não paramétrico de Wilcoxon (p<0,05). Os resultados indicaram que houve um aumento estatisticamente significante na velocidade da movimentação dos caninos irradiados comparados ao seu contralateral, em todos os tempos avaliados, como também a preservação da integridade tecidual. Com isso, concluiu-se que o laser de diodo pode acelerar a movimentação ortodôntica, podendo contribuir para a diminuição do tempo de tratamento.(AU)
Resumo:
The RANK / RANKL / OPG sy stem plays an important role in bone formation and resorption . This finding has been regarded as one of the m ost important advances in the understanding of bone biology with respect to osteoclastogenesis. The aim of this study was to investigate the expression of RANKL / RANK / OPG markers in reimplanted t eeth of rats, and to observe the relationship between the expression of these markers and to oth and bone resorption. Thirty male Wistar rats (Rattus norvegicus albinos) had their maxillary right incisors extrac ted , and were divided into 2 groups according to the period that the extracted teeth were kept in dry air before reimplantation : G1 (n = 15) - 5 minutes , and G2 (n = 15) - 60 minutes . After reimplantation, teeth were analyzed at intervals of 1, 3 and 7 da ys. After these experimental periods, the animals were euthanized. Longitudinal sections with 5μm thick were obtained and stained with Hematoxylin and Eosin for histological analysis , while 3μm thick sections were subjected to immunohistochemical analysis of OPG , RANK and RANKL. The results showed that the RANK / RANKL / OPG system actively participates in both the repair process, as well as tooth and bone resorption . Extr a - alveolar time of 60 minutes before replantation caused minor expressions of RANKL a nd OPG, not influencing the expression of RANK; RANKL immunostaining showed higher in both groups when compared to other biomarkers, participating in all phases of bone and tooth resorption; RANKL was associated to both osteoclastogenesis and c ell ular proliferation , and was expressed in both groups.
Resumo:
Increased osteoclast (OC) bone resorption and/or decreased osteoblast (OB) bone formation contribute to bone loss in osteoporosis and rheumatoid arthritis (RA). Findings of the basic and translational research presented in this thesis demonstrate a number of mechanisms by which cytokine-induced NF-κB activation controls bone resorption and formation: 1) Tumour necrosis factor-α (TNF) expands pool of OC precursors (OCPs) by promoting their proliferation through stimulation of the expression of macrophage colony stimulating factor (M-CSF) receptor, c-Fms, and switching M-CSF-induced resident (M2) to inflammatory (M1) macrophages with enhanced OC forming potential and increased production of inflammatory factors through induction of NF-κB RelB; 2) Similar to RANKL, TNF sequentially activates transcriptional factors NF-κB p50 and p52 followed by c-Fos and then NFATc1 to induce OC differentiation. However, TNF alone induces very limited OC differentiation. In contrast, it pre-activates OCPs to express cFos which cooperates with interleukin-1 (IL-1) produced by these OCPs in an autocrine mechanism by interacting with bone matrix to mediate the OC terminal differentiation and bone resorption from these pre-activated OCPs. 3) TNF-induced OC formation is independent of RANKL but it also induces NF-κB2 p100 to limit OC formation and bone resorption, and thus p100 deletion accelerates joint destruction and systemic bone loss in TNF-induced RA; 4) TNF receptor associated factor-3 (TRAF3) limits OC differentiation by negatively regulating non-canonical NF-κB activation and RANKL induces TRAF3 ubiquitination and lysosomal degradation to promote OC differentiation. Importantly, a lysosomal inhibitor that inhibits TRAF3 degradation prevents ovariectomy-induced bone loss; 5) RelB and Notch NICD bind RUNX2 to inhibit OB differentiation and RelB:p52 dimer association with NICD inhibit OB differentiation by enhancing the binding of RBPjκ to Hes1. These findings suggest that non-canonical NF- κB signaling could be targets to develop new therapies for RA or osteoporosis. For example 1) Agents that degrade TNF-induced RelB could block M1 macrophage differentiation to inhibit inflammation and joint destruction for the therapy of RA; 2)Agents that prevent p100 processing or TRAF3 degradation could inhibit bone resorption and also stimulate bone formation simultaneously for the therapy of osteoporosis.
Resumo:
Introduction - After tooth extraction, the alveolar bone undergoes a remodeling process, wich leads to horizontal and vertical bone loss. These resorption processes complicate dental rehabilitation, particularly in connection with implants. Various methods of guided bone regeneration have been described to retain the original dimension of the bone after extraction. Most procedures use filler materials and membranes to support the buccal plate and soft tissue, to stabilize the coagulum and to prevent epithelial ingrowth. It has also been suggested that resorption of the buccal bundle bone can be avoided by leaving a buccal root segment (socket-shield technique) in place, because the biological integrity of the buccal periodontum remains untouched. This method has also been decribed in connection with immediate implant placement. Objective - This literature review aim enumerate and describe the different treatments and tissue reactions after tooth extraction, immediate and delayed implantation. The socketshield technique, the evolution in tooth extraction and immediate implantation with high esthetic results due to the preservation of hard and soft tissues by leaving a buccal root segment in place. Materials and methods - For this purpose a research has been done and data was obtained from on-line resources: Medline, Pubmed, Scielo, Bireme, Bon, books and specialized magazines which was conducted between January 2016 and May 2016. A number of articles have been obtained in English and French ,published between 1997 and 2015 . The key words used were implantology, dental implant, hard/soft tissue, tooth extraction, immediate implantation, delayed implantation, socket-shield. Conclusion - In socket-shield technique, there were neither functional nor aesthetic changes in soft and hard tissues. It’s already a routine practice in the arsenal of highaesthetic immediate implantology and should be used when indicated. Although this technique is quiet promising, we should be aware of the incoming publications about a larger follow up and the predictability of leaving a fragment inside the socket after an extraction.
Resumo:
Introdução: Uma adequada planificação é condição sine qua non para o êxito do tratamento com implantes. No entanto, nem sempre a colocação dos implantes na posição tridimensional ideal é, logo à partida, viável. Neste contexto, a correção dos colapsos da crista óssea com tecidos duros assume especial importância. Objetivos: O objetivo desta revisão narrativa é avaliar a eficácia dos diversos procedimentos existentes para aumento do rebordo com tecidos duros, de forma a facilitar a escolha do tratamento ideal. Materiais e Métodos: Pesquisou-se nas bases de dados MEDLINE, B-on e Google Académico. As palavras-chave utilizadas foram: “guided bone regeneration”, “ridge augmentation”, “seibert classification”, “alveolar bone splitting”, “horizontal bone augmentation” e “vertical bone augmentation”. Deu-se especial ênfase a revisões sistemáticas e meta-análises. A pesquisa foi limitada a artigos publicados em inglês, espanhol e em português até abril de 2016. Foram ainda consultados os livros “Tratado de Periodontia Clínica e Implantologia Oral” de Lindhe et al. (2005), “Implantes Dentais Contemporâneos” de Misch et al. (2009) e “Reabilitação com implantes endo-ósseos” de Alcoforado et al. (2008). Resultados: De um modo geral, todos os procedimentos analisados obtiveram altas taxas de sobrevivência aquando da reabilitação com implantes. No entanto, não houve diferenças significativas entre as diversas técnicas que possam levar a uma conclusão relevante sobre qual a melhor técnica a utilizar para este tipo de procedimento. Conclusão: Há evidências insuficientes para sugerir qual a técnica que deve ser preferida para o aumento de rebordo com tecidos duros, pelo que mais estudos são necessários.
Resumo:
International audience