958 resultados para Algebraic plane curves
Resumo:
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.
Resumo:
The JTZ model [C. Jung, T. T¶el and E. Ziemniak, Chaos 3, (1993) 555], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is ex- tended here to describe an open plane wake without the con¯ned nar- row channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and ex- perimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the in- teraction between small spherical particles and vortices in an extended JTZ model °ow is studied. It is shown that the particle size has signif- icant in°uences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vortices. Numerical results based on the extended JTZ model are found in qualitative agreement with experimental ones in the normal range of particle sizes.
Resumo:
The problem of a film flowing down an inclined porous layer is considered. The fully developed basic flow is driven by gravitation. A careful linear instability analysis is carried out. We use Darcy's law to describe the porous layer and solve the coupling equations of the fluid and the porous medium rather than the decoupled equations of the one-sided model used in previous works. The eigenvalue problem is solved by means of a Chebyshev collocation method. We compare the instability of the two-sided model with the results of the one-sided model. The result reveals a porous mode instability which is completely neglected in previous works. For a falling film on an inclined porous plane there are three instability modes, i.e., the surface mode, the shear mode, and the porous mode. We also study the influences of the depth ratio d, the Darcy number delta, and the Beavers-Joseph coefficient alpha(BJ) on the instability of the system.
Resumo:
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.
Resumo:
Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.
An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.
Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases. (C) 2009 Optical Society of America
Resumo:
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.
The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity.
In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.
Resumo:
The propagation of the fast magnetosonic wave in a tokamak plasma has been investigated at low power, between 10 and 300 watts, as a prelude to future heating experiments.
The attention of the experiments has been focused on the understanding of the coupling between a loop antenna and a plasma-filled cavity. Special emphasis has been given to the measurement of the complex loading impedance of the plasma. The importance of this measurement is that once the complex loading impedance of the plasma is known, a matching network can be designed so that the r.f. generator impedance can be matched to one of the cavity modes, thus delivering maximum power to the plasma. For future heating experiments it will be essential to be able to match the generator impedance to a cavity mode in order to couple the r.f. energy efficiently to the plasma.
As a consequence of the complex impedance measurements, it was discovered that the designs of the transmitting antenna and the impedance matching network are both crucial. The losses in the antenna and the matching network must be kept below the plasma loading in order to be able to detect the complex plasma loading impedance. This is even more important in future heating experiments, because the fundamental basis for efficient heating before any other consideration is to deliver more energy into the plasma than is dissipated in the antenna system.
The characteristics of the magnetosonic cavity modes are confirmed by three different methods. First, the cavity modes are observed as voltage maxima at the output of a six-turn receiving probe. Second, they also appear as maxima in the input resistance of the transmitting antenna. Finally, when the real and imaginary parts of the measured complex input impedance of the antenna are plotted in the complex impedance plane, the resulting curves are approximately circles, indicating a resonance phenomenon.
The observed plasma loading resistances at the various cavity modes are as high as 3 to 4 times the basic antenna resistance (~ .4 Ω). The estimated cavity Q’s were between 400 and 700. This means that efficient energy coupling into the tokamak and low losses in the antenna system are possible.