398 resultados para Agglomerate Breakage
Resumo:
The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^
Resumo:
The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. ^ The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc. ^
Resumo:
Cutting tools less than 2mm diameter can be considered as micro-tool. Microtools are used in variety of applications where precision and accuracy are indispensable. In micro-machining operations, a small amount of material is removed and very small cutting forces are created. The small cross sectional area of the micro-tools drastically reduces their strength and makes their useful life short and unpredictable; so cutting parameters should be selected carefully to avoid premature tool breakage. The main objective of this study is to develop new techniques to select the optimal cutting conditions with minimum number of experiments and to evaluate the tool wear in machining operations. Several experimental setups were prepared and used to investigate the characteristics of cutting force and AE signals during the micro-end-milling of different materials including steel, aluminum and graphite electrodes. The proposed optimal cutting condition selection method required fewer experiments than conventional approaches and avoided premature tool breakage. The developed tool wear monitoring technique estimated the used tool life with ±10% accuracy from the machining data collected during the end-milling of non-metal materials.
Resumo:
The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc.
Resumo:
Recent studies have shown evidence of log-periodic behavior in non-hierarchical systems. An interesting fact is the emergence of such properties on rupture and breakdown of complex materials and financial failures. These may be examples of systems with self-organized criticality (SOC). In this work we study the detection of discrete scale invariance or log-periodicity. Theoretically showing the effectiveness of methods based on the Fourier Transform of the log-periodicity detection not only with prior knowledge of the critical point before this point as well. Specifically, we studied the Brazilian financial market with the objective of detecting discrete scale invariance in Bovespa (Bolsa de Valores de S˜ao Paulo) index. Some historical series were selected periods in 1999, 2001 and 2008. We report evidence for the detection of possible log-periodicity before breakage, shown its applicability to the study of systems with discrete scale invariance likely in the case of financial crashes, it shows an additional evidence of the possibility of forecasting breakage
Resumo:
INTRODUCTION: In Brazil, the health training policies have been going through deep changes, which are the fruits of the sanitary reform and of the breakage with the biomedical model, still hegemonic. Nevertheless, the paradigm of comprehensiveness is being introduced in health and, in order to consolidate this concept, the training has been gaining new methodological approaches. One can mention the teaching-service interaction (education-health system/citizenship health), whose proposal enables the expansion of the perception of the health-disease process, as well as the warranty of compromises of training in relation to SUS. OBJECTIVE: Understand, from health professionals, the relevance of teaching-service-community interaction, vocational training of students of the Faculty of Health Sciences / UFRN. METHODOLOGICAL PROCEDURES: This study is grounded on qualitative approach. The technique used to obtain research data was the focus group. Two focus groups (FG) were accomplished in two family basic health units of the municipality of Santa Cruz – RN, where there is participation of professionals of the Family Health Strategy. The discussions were performed from a previously elaborated script. The analysis of results was held from the categorical thematic content technique. RESULTS: The study had the participation of 18 health professionals, and 13 (72%) were females. For these professionals, the teaching-service interaction enables the student to understand the model of comprehensive health care, since the contact with the community enhances its perception about the health-disease process, but also enables recognizing the importance of teamwork to comprehensive health care. FINAL CONSIDERATIONS: The results highlight the importance of a policy of reorientation within the context of training so that students have an early contact with the service and therefore develop technical skills within the context in which they are inserted.
Resumo:
Currently, there is a great search for materials derived from renewable sources. The vegetable fibers as reinforcement for polymer matrixes, has been used as an alternative to replace synthetic fibres, being biodegradable and of low cost. The present work aims to develop a composite material with epoxy resin reinforced with curauá fibre with the addition of alumina trihydrate (aluminum hydroxide, Al(OH)3) as a flame retardant, which was used in proportions of 10 %, 20% and 30% of the total volume of the composite. The curauá fibers have gone through a cleaning process with an alkaline bath of sodium hydroxide (NaOH ), parallelized by hand and cut carding according to the default length . They were molded composites with fibers 30cm. Composites were molded in a Lossy Mold with unidirectional fibres in the proportion of 20% of the total volume of the composite. The composites were prepared in the Chemical Processing Laboratory of the Textile Engineering Department at UFRN. To measure the performance of the material, tests for the resistance to traction and flexion were carried out. with samples that were later analyzed in the Electronic Microscopy Apparatus (SEM ). The composites showed good mechanical properties by the addition of flame retardant and in some cases, leaving the composite more vulnerable to breakage. These mechanical results were analyzed by chi-square statistical test at the 5% significance level to check for possible differences between the composite groups. Flammability testing was conducted based on the standard Underwriters Laboratory 94 and the material showed a satisfactory result taking their average burn rate (mm / min) decreasing with increasing addition of the flame retardant composite.
Resumo:
Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands
Resumo:
Deposits of manganese ore have been found in five of the six provinces of Cuba and have been reported from the sixth. Only Oriente and Pinar del Rio provinces have more than a few known deposits and only the deposits of Oriente have yielded any appreciable amount of ore. In this area the Cobre formation, of late Cretaceous(?) to middle Eocene age, overlies the Vinent formation but their stratigraphie relations are unknown. The Cobre overlies unconformably the Habana(?) formation. The Cobre formation consists of andesitic, basaltic, and dacitic tuff, agglomerate, and lavas with minor amounts of marine clastic and limestone deposits, and a prominent limestone bed, the Charco Redondo limestone member, at the top of the formation. All productive manganese deposits of Oriente are in the Cobre formation, usually within a few tens of meters above or below the base of the Charco Redondo limestone member.
Resumo:
Translocations in myeloma are thought to occur solely in mature B cells in the germinal center through class switch recombination (CSR). We used a targeted captured technique followed by massively parallel sequencing to determine the exact breakpoints in both the immunoglobulin heavy chain (IGH) locus and the partner chromosome in 61 presentation multiple myeloma samples. The majority of samples (62%) have a breakpoint within the switch regions upstream of the IGH constant genes and are generated through CSR in a mature B cell. However, the proportion of CSR translocations is not consistent between cytogenetic subgroups. We find that 100% of t(4;14) are CSR-mediated; however, 21% of t(11;14) and 25% of t(14;20) are generated through DH-JH recombination activation gene-mediated mechanisms, indicating they occur earlier in B-cell development at the pro-B-cell stage in the bone marrow. These 2 groups also generate translocations through receptor revision, as determined by the breakpoints and mutation status of the segments used in 10% and 50% of t(11;14) and t(14;20) samples, respectively. The study indicates that in a significant number of cases the translocation-based etiological events underlying myeloma may arise at the pro-B-cell hematological progenitor cell level, much earlier in B-cell development than was previously thought.
Resumo:
Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
BACKGROUND: Reconstruction of the distal femur after resection for malignant bone tumors in skeletally immature children is challenging. The use of megaprostheses has become increasingly popular in this patient group since the introduction of custom-made, expandable devices that do not require surgery for lengthening, such as the Repiphysis(®) Limb Salvage System. Early reports on the device were positive but more recently, a high complication rate and associated bone loss have been reported. QUESTIONS/PURPOSES: We asked: (1) what are the clinical outcomes using the Musculoskeletal Tumor Society (MSTS) scoring system after 5-year minimum followup in patients treated with this prosthesis at one center; (2) what are the problems and complications associated with the lengthening procedures of this implant; and (3) what are the specific concerns associated with revision of this implant? METHODS: At our institute, between 2002 and 2007, the Repiphysis(®) expandable prosthesis was implanted in 15 children (mean age, 8 years; range, 6-11 years) after distal femoral resection for malignant bone tumors. During this time, the general indication for use of this implant was resection of the distal femur for localized malignant bone tumors in pediatric patients. Alternative techniques used for this indication were modular prosthetic reconstruction, massive (osteoarticular or intercalary) allograft reconstruction, or rotationplasty. Age and tumor extension were the main factors to decide on the surgical indication. Of the 15 patients who had this prosthesis implanted during reconstruction surgery, five died with the implant in situ or underwent amputation before 5 years followup and the remaining 10 were evaluated at a minimum of 5 years (mean, 104 months; range, 78-140 months). No patients were lost to followup. These 10 patients were long-term survivors and underwent the lengthening program. They were included in our study analysis. The first seven lengthening procedures were attempted in an outpatient setting; however, owing to pain and burning sensations experienced by the patients, the procedures failed to achieve the desired lengthening. Therefore, other procedures were performed with the patients under general anesthesia. We reviewed clinical data at index surgery for all 15 patients. We further analyzed the lengthening procedures, implant survival, radiographic and functional results, for the 10 long-term survivors. Functional results were assessed according to the MSTS scoring system. Complications were classified according to the International Society of Limb Salvage (ISOLS) classification system. RESULTS: Nine of the 10 survivors underwent revision of the implant for mechanical failure. They had a mean MSTS score of 64% (range, 47%-87%) before revision surgery. At final followup the 10 long-term surviving patients had an average MSTS score of 81% (range, 53%-97%). In total, we obtained an average lengthening of 39 mm per patient (range, 17-67 mm). Exact expansion of the implant was unpredictable and difficult to control. Nine of 10 of the long-term surviving patients underwent revision surgery of the prosthesis-eight for implant breakage and one for stem loosening. At revision surgery, six patients had another type of expandable prosthesis implanted and three had an adult-type megaprosthesis implanted. In five cases, segmental bone grafts were used during revision surgery to compensate for loss of bone stock. CONCLUSIONS: We could not comfortably expand the Repiphysis(®) prosthesis in an outpatient setting because of pain experienced by the patients during the lengthening procedures. Furthermore, use of the prosthesis was associated with frequent failures related to implant breakage and stem loosening. Revisions of these procedures were complex and difficult. We no longer use this prosthesis and caution others against the use of this particular prosthesis design. LEVEL OF EVIDENCE: Level IV, therapeutic study.
Resumo:
A consciencialização ambiental vem assumindo um papel preponderante na construção civil. Nesse sentido, o desenvolvimento de materiais sustentáveis e ecológicos é essencial para a satisfação de fabricantes e consumidores, respeitando diversos requisitos: níveis reduzidos de poluição e toxicidade, durabilidade dos materiais, possibilidade de reutilização e/ou reciclagem, a proveniência das matérias-primas e a possibilidade de contaminação do ar no interior dos edifícios. As declarações ambientais de produto (DAP) permitem informar o consumidor do desempenho ambiental dos materiais dos produtos. Assim, ao longo de todo o processo de fabrico são registados os consumos de recursos e emissões ambientais e, através da metodologia de avaliação de ciclo de vida, é quantificada a contribuição resultante para impactes ambientais. Esta dissertação visa analisar os possíveis impactes ambientais no decurso do processo de produção de um pavimento flutuante de cortiça, constituído por cortiça, High Density Fibreboard (HDF) e acabamento de superfície, denominado Artcomfort Floating NPC e elaborar de um relatório de suporte, que servirá de base para a DAP do pavimento Artcomfort Floating NPC do sistema do Institut Bauen und Umwelt (IBU). Esta dissertação inclui um relatório de fundo, para a avaliação do ciclo de vida do pavimento flutuante Artcomfort Floating NPC da empresa Amorim Revestimentos, que servirá de base para a elaboração da declaração ambiental de produto (DAP) do mesmo. Para tal, recorreu-se ao software SimaPro para análise dos impactes ambientais das várias fases do processo de fabrico do pavimento em estudo, sendo as fases consideradas, a produção da camada base de cortiça aglomerada, camada backing de cortiça aglomerada, montagem da sanduiche, placa pintada, placa acabada e corte e embalagem. A fase que tem maior contribuição para os impactes ambientais do processo de fabrico do produto, em todas as categorias de impacte analisadas, com exceção da depleção dos recursos abióticos sem combustíveis fósseis, foi a fase de montagem da sanduiche.
Resumo:
The protein Ezrin, is a member of the ERM family (Ezrin, Radixin and Moesin) that links the F-actin to the plasma membrane. The protein is made of three domains namely the FERM domain, a central α-helical domain and the CERMAD domain. The residues in Ezrin such as Ser66, Tyr145, Tyr353 and Tyr477 regulate the function of the protein through phosphorylation. The protein is found in two distinct conformations of active and dormant (inactive) state. The initial step during the conformation change is the breakage of intramolecular interaction in dormant Ezrin by phosphorylation of residue Thr567. The dormant structure of human Ezrin was predicted computationally since only partial active form structure was available. The validation analysis showed that 99.7% residues were positioned in favored, allowed and generously allowed regions of the Ramachandran plot. The Z-score of Ezrin was −7.36, G-factor was 0.1, and the QMEAN score of the model was 0.61 indicating a good model for human Ezrin. The comparison of the conformations of the activated and dormant Ezrin showed a major shift in the F2 lobe (residues 142-149 and 161-177) while changes in the conformation induced mobility shifts in lobe F3 (residues 261 to 267). The 3D positions of the phosphorylation sites Tyr145, Tyr353, Tyr477, Tyr482 and Thr567 were also located. Using targeted molecular dynamic simulation, the molecular movements during conformational change from active to dormant were visualized. The dormant Ezrin auto-inhibits itself by a head-to-tail interaction of the N-terminal and C-terminal residues. The trajectory shows the breakage of the interactions and mobility of the CERMAD domain away from the FERM domain. Protein docking and clustering analysis were used to predict the residues involved in the interaction between dormant Ezrin and mTOR. Residues Tyr477 and Tyr482 were found to be involved in interaction with mTOR.