966 resultados para AIR MASS TRAJECTORY ANALYSIS
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A new influx of sea-rafted pumice reached the eastern coast of Australia in October 2002, approximately 1 year after a felsic, shallow-marine explosive eruption at a previously unknown volcano (0403-091) along the Tofua volcanic arc (Tonga). The eruption produced floating pumice rafts that first became stranded in Fiji in November 2001, approximately I month after the eruption. Strandings of sea-rafted pumice along shorelines have been the only record of products from this submarine explosive eruption at the remote, submerged volcano. Computed drift trajectories of the sea-rafted pumice using numerical models of southwest Pacific surface wind fields and ocean currents indicate two cyclonic systems disturbed the drift of pumice to eastern Australia, as well as the importance of the combined wave and direct wind effect on pumice trajectory. Pumice became stranded along at least two-thirds (>2000 km) of the coastline of eastern Australia, being deposited on beaches during a sustained period of fresh onshore winds. Typical amounts of pumice initially stranded on beaches were 500-4000 individual clasts per in, and a minimum volume estimate of pumice that arrived to eastern Australia is 1.25 x 10(5) m(3). Pumice was beached below maximum tidal/storm surge levels and was quickly reworked back into the ocean, such that the concentration of beached pumice rapidly dissipated within weeks of the initial stranding, and little record of this stranding event now exists. Most stranded pumice clasts ranged in size from 2 to 5 cm in diameter; the largest measured clasts were 10 cm in Australia and 20 cm in Fiji. The pumice has a low phenocryst content (3500 km) and period of pumice floatation (greater than or equal to1 year), confirm the importance of sea-rafted pumice as a long-distance dispersal mechanism for marine organisms including marine pests and harmful invasive species. Billions of individual rafting pumice clasts can be generated in a single small-volume eruption, such as observed here, and the geological implications for the transport of sessile taxa over large distances are significant. An avenue for future research is to examine whether speciation events and volcanicity are linked; the periodic development of globalism for some taxa (e.g., corals, gastropods, bryozoa) may correlate in time and/or space with voluminous silicic igneous events capable of producing >10(6) km(3) of silicic pumice-rich pyroclastic material and emplaced into ocean basins. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. ( 2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass ( TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the positive feedback'' mechanism proposed by Ursino et al. ( 2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.
Resumo:
We have carried out a discovery proteomics investigation aimed at identifying disease biomarkers present in saliva, and, more specifically, early biomarkers of inflammation. The proteomic characterization of saliva is possible due to the straightforward and non-invasive sample collection that allows repetitive analyses for pharmacokinetic studies. These advantages are particularly relevant in the case of newborn patients. The study was carried out with samples collected during the first 48 hours of life of the newborns according to an approved Ethic Committee procedure. In particular, the salivary samples were collected from healthy and infected (n=1) newborns. Proteins were extracted through cycles of sonication, precipitated in ice cold acetone, resuspended and resolved by 2D-electrophoresis. MALDI TOF/TOF mass spectrometry analysis was performed for each spot obtaining the proteins’ identifications. Then we compared healthy newborn salivary proteome and an infected newborn salivary proteome in order to investigate proteins differently expressed in inflammatory condition. In particular the protein alpha-1-antitrypsin (A1AT), correlated with inflammation, was detected differently expressed in the infected newborn saliva. Therefore, in the second part of the project we aimed to develop a robust LC-MS based method that identifies and quantifies this inflammatory protein within saliva that might represent the first relevant step to diagnose a condition of inflammation with a no-invasive assay. The same LC-MS method is also useful to investigate the presence of the F allelic variant of the A1AT in biological samples, which is correlated with the onset of pulmonary diseases. In the last part of the work we analysed newborn saliva samples in order to investigate how phospholipids and mediators of inflammation (eicosanoids) are subject to variations under inflammatory conditions and a trend was observed in lysophosphatidylcholines composition according to the inflammatory conditions.
Resumo:
Under conditions of hypoxia, most eukaryotic cells undergo a shift in metabolic strategy, which involves increased flux through the glycolytic pathway. Although this is critical for bioenergetic homeostasis, the underlying mechanisms have remained incompletely understood. Here, we report that the induction of hypoxia-induced glycolysis is retained in cells when gene transcription or protein synthesis are inhibited suggesting the involvement of additional post-translational mechanisms. Post-translational protein modification by the small ubiquitin related modifier-1 (SUMO-1) is induced in hypoxia and mass spectrometric analysis using yeast cells expressing tap-tagged Smt3 (the yeast homolog of mammalian SUMO) revealed hypoxia-dependent modification of a number of key glycolytic enzymes. Overexpression of SUMO-1 in mammalian cancer cells resulted in increased hypoxia-induced glycolysis and resistance to hypoxia-dependent ATP depletion. Supporting this, non-transformed cells also demonstrated increased glucose uptake upon SUMO-1 overexpression. Conversely, cells overexpressing the de-SUMOylating enzyme SENP-2 failed to demonstrate hypoxia-induced glycolysis. SUMO-1 overexpressing cells demonstrated focal clustering of glycolytic enzymes in response to hypoxia leading us to hypothesize a role for SUMOylation in promoting spatial re-organization of the glycolytic pathway. In summary, we hypothesize that SUMO modification of key metabolic enzymes plays an important role in shifting cellular metabolic strategies toward increased flux through the glycolytic pathway during periods of hypoxic stress. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Recreational abuse of the drugs cocaine, methamphetamine, and morphine continues to be prevalent in the United States of America and around the world. While numerous methods of detection exist for each drug, they are generally limited by the lifetime of the parent drug and its metabolites in the body. However, the covalent modification of endogenous proteins by these drugs of abuse may act as biomarkers of exposure and allow for extension of detection windows for these drugs beyond the lifetime of parent molecules or metabolites in the free fraction. Additionally, existence of covalently bound molecules arising from drug ingestion can offer insight into downstream toxicities associated with each of these drugs. This research investigated the metabolism of cocaine, methamphetamine, and morphine in common in vitro assay systems, specifically focusing on the generation of reactive intermediates and metabolites that have the potential to form covalent protein adducts. Results demonstrated the formation of covalent adduction products between biological cysteine thiols and reactive moieties on cocaine and morphine metabolites. Rigorous mass spectrometric analysis in conjunction with in vitro metabolic activation, pharmacogenetic reaction phenotyping, and computational modeling were utilized to characterize structures and mechanisms of formation for each resultant thiol adduction product. For cocaine, data collected demonstrated the formation of adduction products from a reactive arene epoxide intermediate, designating a novel metabolic pathway for cocaine. In the case of morphine, data expanded on known adduct-forming pathways using sensitive and selective analysis techniques, following the known reactive metabolite, morphinone, and a proposed novel metabolite, morphine quinone methide. Data collected in this study describe novel metabolic events for multiple important drugs of abuse, culminating in detection methods and mechanistic descriptors useful to both medical and forensic investigators when examining the toxicology associated with cocaine, methamphetamine, and morphine.
Resumo:
Ecosystem management practices that modify the major drivers and stressors of an ecosystem often lead to changes in plant community composition. This paper examines how closely the trajectory of vegetation change in seasonally-flooded wetlands tracks management-induced alterations in hydrology and soil characteristics. We used trajectory analysis, a multivariate method designed to test hypotheses about rates and directions of community change, to examine vegetation shifts in response to changes in water management practices within the Taylor Slough basin of Everglades National Park. We summarized vegetation data by non-metric multidimensional scaling ordination, and examined the time trajectory of each site along environmental vectors representing hydrology and soil phosphorus gradients. In the Taylor Slough basin, vegetation change trajectories closely followed the hydrologic changes caused by the operation of water pumps and detention ponds adjacent to the canals. We also observed a shift in vegetation composition along a vector of increasing soil phosphorus, which suggests the need for implementing measures to avoid P-enrichment in southern Everglades marl prairies. This study indicates that shifts in vegetation composition in response to changes in hydrologic conditions and associated parameters may be detected through trajectory analysis, thereby providing feedback for adaptive management of wetland ecosystems.
Resumo:
Brominated flame retardants (BFRs) have been found in Arctic wildlife, lake sediment, and air. To identify the atmospheric BFR deposition history on Svalbard, Norway, we analyzed 19 BFRs, including hexabromocyclododecane (HBCD), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB),and 15 polybrominated diphenyl ether congeners (PBDE) in the upper 34 m of an ice core (representing 1953-2005) from Holtedahlfonna, the western-most ice sheet on Svalbard. All of the non-PBDE compounds were detected in nearly continuous profiles in the core. Seven PBDEs were not observed above background (28,47,66,100,99,154,153), while 4 were found in 1 or 2 of 6 segments (17,85,138,183). BDEs-49,71,190,209 had nearly continuous profiles but only BDE-209 in large amounts. The greatest inputs were HBCD and BDE-209, 910, and 320 pg/cm**2/yr from 1995-2005. DBDPE, BTBPE, and PBEB show nearly continuous input growth in recent core segments, but all were <6 pg/cm**2/yr. Long-range atmospheric processes may have moved these particle-bound BFRs to the site, probably during the Arctic haze season. Average air mass trajectories over 10 years show >75% of atmospheric flow to Holtedahlfonna coming from Eurasia during haze periods (March and April).
Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera
Resumo:
This study investigated the impacts of acidified seawater (pCO2 900 µatm) and elevated water temperature (+3 °C) on the early life history stages of Acropora spicifera from the subtropical Houtman Abrolhos Islands (28°S) in Western Australia. Settlement rates were unaffected by high temperature (27 °C, 250 µatm), high pCO2 (24 °C, 900 µatm), or a combination of both high temperature and high pCO2 treatments (27 °C, 900 µatm). There were also no significant differences in rates of post-settlement survival after 4 weeks of exposure between any of the treatments, with survival ranging from 60 to 70 % regardless of treatment. Similarly, calcification, as determined by the skeletal weight of recruits, was unaffected by an increase in water temperature under both ambient and high pCO2 conditions. In contrast, high pCO2 significantly reduced early skeletal development, with mean skeletal weight in the high pCO2 and combined treatments reduced by 60 and 48 %, respectively, compared to control weights. Elevated temperature appeared to have a partially mitigative effect on calcification under high pCO2; however, this effect was not significant. Our results show that rates of settlement, post-settlement survival, and calcification in subtropical corals are relatively resilient to increases in temperature. This is in marked contrast to the sensitivity to temperature reported for the majority of tropical larvae and recruits in the literature. The subtropical corals in this study appear able to withstand an increase in temperature of 3 °C above ambient, indicating that they may have a wider thermal tolerance range and may not be adversely affected by initial increases in water temperature from subtropical 24 to 27 °C. However, the reduction in skeletal weight with high pCO2 indicates that early skeletal formation will be highly vulnerable to the changes in ocean pCO2 expected to occur over the twenty-first century, with implications for their longer-term growth and resilience.
Resumo:
A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulfate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0 and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France, 2010. Di values are low (∼ 2) for fresh traffic and wood-burning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (∼ 4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulfate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and wood-burning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulfate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient particle mixing state at other locations globally.
Resumo:
Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.
Resumo:
Fluxes of airborne freshwater diatoms (FD), phytoliths (PH), and pollen grains (PO) collected with sediment traps off Cape Blanc, northwest Africa, from 1988 till 1991 are presented. Both continental rainfall variations and wind mean strength and direction play a key role in the temporal fluctuations of the fluxes of eolian traces in the pelagic realm. Drier conditions in Northern Africa in 1987 could have preceded the high lithogenic input and moderate FD flux in 1988. The PH peak in summer 1988 was probably caused by increased wind velocity. Wetter rainy seasons of 1988/89 might have promoted a significant pollen production in summer 1989, and FD in late 1989 and early 1990, as well as contributed to the reduction of the lithogenic flux in 1989/90. Decreased fluxes of FD, PH and PO, and higher contribution of the 6-11 µm lithogenic fraction in 1991 would mainly reflect minor intensity and decreased amount of continental trade winds. Air-mass backward trajectories confirm that the Saharan Air Layer is predominantly involved in the spring/summer transport. Trade winds play a decisive role in the fall/winter months, but also contribute to the transport during late spring/summer. Origin of wind trajectories does not support a direct relationship between transporting wind-layers and material source areas in Northern Africa. High winter fluxes of eolian tracers and high amount of trade winds with continental origin in summer warn against a simplistic interpretation of the seasonal eolian signal preserved in the sediments off Cape Blanc, and the wind layer involved in its transport.
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
The stretch blow moulding (SBM) process is the main method for the mass production of PET containers. And understanding the constitutive behaviour of PET during this process is critical for designing the optimum product and process. However due to its nonlinear viscoelastic behaviour, the behaviour of PET is highly sensitive to its thermomechanical history making the task of modelling its constitutive behaviour complex. This means that the constitutive model will be useful only if it is known to be valid under the actual conditions of interest to the SBM process. The aim of this work was to develop a new material characterization method providing new data for the deformation behaviour of PET relevant to the SBM process. In order to achieve this goal, a reliable and robust characterization method was developed based on an instrumented stretch rod and a digital image correlation system to determine the stress-strain relationship of material in deforming preforms during free stretch-blow tests. The effect of preform temperature and air mass flow rate on the deformation behaviour of PET was also investigated.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.