Single particle diversity and mixing state measurements


Autoria(s): Healy, Robert M.; Riemer, Nicole; Wenger, John C.; Murphy, Michael; West, M.; Poulain, Laurent; Wiedensohler, Alfred; O'Connor, Ian P.; McGillicuddy, Eoin; Sodeau, John R.; Evans, Greg J.
Data(s)

27/07/2016

27/07/2016

14/02/2014

06/06/2014

Resumo

A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulfate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0 and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France, 2010. Di values are low (∼ 2) for fresh traffic and wood-burning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (∼ 4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulfate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and wood-burning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulfate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient particle mixing state at other locations globally.

Formato

application/pdf

Identificador

Healy, R.M., Riemer, N., Wenger, J.C., Murphy, M., West, M., Poulain, L., Wiedensohler, A., O'Connor, I.P., McGillicuddy, E., Sodeau, J.R. and Evans, G. J. (2014) 'Single particle diversity and mixing state measurements', Atmospheric Chemistry and Physics Discussions, 14, pp. 3973–4005. doi:10.5194/acpd-14-3973-2014

14

3973

4005

1680-7367

http://hdl.handle.net/10468/2945

10.5194/acpd-14-3973-2014

Atmospheric Chemistry and Physics Discussions

Idioma(s)

en

Publicador

Copernicus Publications on behalf of the European Geosciences Union (EGU)

Direitos

© 2014, the Authors. This work is distributed under the Creative Commons Attribution 3.0 License.

https://creativecommons.org/licenses/by/3.0/

Palavras-Chave #Aerosol #Ammonium #Black carbon #Measurement method #Mixing #Nitrate #Sulfate
Tipo

Article (peer-reviewed)