945 resultados para ACCELERATING FRONTS
Resumo:
Thermal annealing effect on InAs quantum dots grown on vicinal (100) GaAs substrates is studied in comparison with dots on exact (100) GaAs substrates. We find that annealing acts stronger effect on dots with vicinal substrates by greatly accelerating the degradation of material quality. as well as slightly increasing the blueshift of the emission wavelength and the narrowing of PL linewidth. It is attributed to the higher strain in the dots formed on the vicinal substrates.
Resumo:
The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy ( MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGAs/GgAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when, the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.
Resumo:
在米脂山地微灌枣树示范基地研究了一定流量范围、不同灌水量条件下,地表滴灌水分在水平和垂直方向上的运移规律及滴灌结束后的水分再分布特征。试验结果表明:在流量稳定条件下,湿润体的水平和垂直扩散距离均与时间有显著的幂函数关系;在4.6~5.0 L/h的流量范围内,湿润体的水平和垂直扩散距离与灌水量也存在显著的幂函数关系;滴灌停止后24 h内的土壤湿润体扩散很大,湿润体平均含水量降低很快,24 h后的扩散较小,平均含水量下降较小,确定滴灌停止后24 h时的湿润体特征值可作为滴灌系统设计的依据。
Resumo:
High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.
Resumo:
Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.
Resumo:
Solidification behavior and microstructural evolution of surface modified layers in plasma cladding technique are studied via numerical simulations. Both the coupling effect of temperature and solid volume fraction are considered in the proposed thermal analytical model, by which the transient temperature distributions are calculated and the shape of melting pool is determined. Furthermore, we perform microscopic thermal analysis on the nucleation and growth behaviors of ceramic hardening phases and dendrites, as well as the kinetics of related two-phase flow systems. By comparing with experimental observations, the evolution mechanisms of the morphology of Al2O3 ceramic hardening layer are explained. Based on the above results, a relationship among the scanning velocity of plasma stream, dendritic growth rate and the advancing speed of solid/liquid interface is found, and an energy criterion is proposed for predicting the pushing/engulfing transition of ceramic particles by grain growth fronts. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A general numerical algorithm in the context of finite element scheme is developed to solve Richards’ equation, in which a mass-conservative, modified head based scheme (MHB) is proposed to approximate the governing equation, and mass-lumping techniques are used to keep the numerical simulation stable. The MHB scheme is compared with the modified Picard iteration scheme (MPI) in a ponding infiltration example. Although the MHB scheme is a little inferior to the MPI scheme in respect of mass balance, it is superior in convergence character and simplicity. Fully implicit, explicit and geometric average conductivity methods are performed and compared, the first one is superior in simulation accuracy and can use large time-step size, but the others are superior in iteration efficiency. The algorithm works well over a wide variety of problems, such as infiltration fronts, steady-state and transient water tables, and transient seepage faces, as demonstrated by its performance against published experimental data. The algorithm is presented in sufficient detail to facilitate its implementation.
Resumo:
We show the four-dimensional Newton's constant obtained naturally from five-dimensional brane world with a tinily sloping extra dimension, which is independent of the bulk Weyl tensor. The corresponding universe is stiff fluid dominated when the slope of extra dimension is very small. Otherwise, the universe may be undergoing a self-acceleration at present epoch and have a decelerated phase in very recent past.
Resumo:
The charge stripping injection method has been adopted for the accumulation of light heavy ions in HIRFL-CSR. This method has some special requirements for the accelerating particles, and at the same time the structure of the injection orbit has to be changed. In this paper, the design of the orbit has been presented, as well as the calculation of the beam line matching. According to the result of commissioning, stripping injection can accumulate the beam to a higher current.
Resumo:
In order to realize high energy density physics and plasma physics research at HIRFL-CSR, a magnetic alloy (MA)-loaded cavity has been studied. According to the theoretical calculation and simulation for the MA-loaded cavity, we achieved a better result. The MA-loaded cavity had a higher Qf value, with a higher shunt impedance and a higher accelerating gradient. The accelerating gradient was about 95 kV/m at 1.8003 MHz, 130 kV/m at 0.9000 MHz. Compared with the ferrite-loaded cavities that are used at HIRFL-CSR, with about 10 kV/m accelerating gradient, the MA-loaded cavity obviously has an advantage. The results of the theoretical calculation and the simulation, which meet the design requirements are in good agreement.
Resumo:
Superconducting quarter-wave resonators, due to their compactness and their convenient shape for tuning and coupling, are very attractive for low-beta beam acceleration. In this paper, two types of cavities with different geometry have been numerically simulated: the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz, beta=0.06 beams; then the relative electromagnetic parameters and geometric sizes have been compared. It is found that the second type, whose structural design is optimized with the conical stem and shaping drift-tube, can support the better accelerating performance. At the end of the paper, some structural deformation effects on frequency shifts and appropriate solutions have been discussed.
Resumo:
A linear accelerator as a new injector for the SSC (Separated Sector Cyclotron) of the HIRFL (Heavy ton Research Facility Lanzhou) is being designed. The DTL (Drift-Tube-Linac) has been designed to accelerate U-238(34+) from 0.140 MeV/u to 0.97 MeV/u. To the first accelerating tank which accelerates U-238(34+) to 0.54 MeV/u, the approach of Alternating-Phase-Focusing (APF) is applied. The phase array is obtained by coupling optimization software Dakota and beam optics code LINREV. With the hybrid of Multi-objective Genetic Algorithm (MOGA) and a pattern search method, an optimum array of asynchronous phases is determined. The final growth, both transversely and longitudinally, can meet the design requirements. In this paper, the deign optimization of the APF DTL is presented.
Resumo:
In order to realize high energy density physics and plasma physics research at HIRFL-CSR, a magnetic alloy (MA)-loaded cavity has been studied. According to the theoretical calculation and simulation for the MA-loaded cavity, we achieved a better result. The MA-loaded cavity had a higher mu Q f value, with a higher shunt impedance and a higher accelerating gradient. The accelerating gradient was about 95 kV/m at 1.8003 MHz, 130 kV/m at 0.9000 MHz. Compared with the ferrite-loaded cavities that are used at HIRFL-CSR, with about 10 kV/m accelerating gradient, the MA-loaded cavity obviously has an advantage. The results of the theoretical calculation and the simulation, which meet the design requirements are in good agreement.
Resumo:
电子束辐照烟道气脱除502和NOx技术是一项将辐射物理和辐射化学紧密结合的高新技术。该项技术自1970年被提出后,经历了20多年的逐步发展,已进入了工业装置阶段。目前,在美国、德国、日本、波兰和我国的成都热电厂等处建立了中试厂和工业示范厂。当前在国际上,对一该项目的关键部件电子加速器有两种方案:即日新公司的高压变压器方案和以俄罗斯新西伯利亚核物理研究所的ElV型加速器为代表的谐振变压器型。根据目前国内的实际状况和满足我所及在兰州各研究所的物理实验的需要,中利4院近代物理所在已有技术力量的基础上,并在国家计委的大力支持下,立项研制大功率谐振变压器型电子加速器。这篇论文首先对1.5Mev/300mA三相谐振变压器型电子加速器的高压电极表面电场强度、分布电容、电感、三相谐振频率等作了预研。在此基础上,着重对强流静电加速管轴上电位和电场分布、平面电子枪的实际电流密度、电极膜孔透镜对束流的聚焦性能、加速管中电子轨迹和出射斜率、球面阴极的电子光学特性等作了详细的计算和分析,从计算得到的结果来看,所设计的电场能够满足束流传输的要求。另外,还对加速管非均匀场对电子负载的抑制作用,离子反轰阴极作了初步研究。论文的另一个重点是研究了静电加速管中强流电子束的空间电荷效应。根据实际情况,合理地建立了物理模型。并对模型上的4个不同位置的束内外径向电位分布、空间电荷对轴_L电位的影响,以及空间电荷力对束流传输的影响等进行了详尽的理论计算和分析。在对轴上电场分布进行分析时,发现可以将电场沿轴向分为3个区域,并认真对每个区域的作用作了详细的分析说明。特别指出了,强流静电加速管的设计关键在加速管的前端,与弱流加速管相比,前者的变化幅度要大得多。论文最后对大功率电子加速器部件的加工和三相谐振变压器高压发生器模拟实验结果给予了介绍和分析。