962 resultados para wind power plants


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measuring variations in efficiency and its extension, eco-efficiency, during a restructuring period in different industries has always been a point of interest for regulators and policy makers. This paper assesses the impacts of restructuring of procurement in the Iranian power industry on the performance of power plants. We introduce a new slacks-based model for Malmquist-Luenberger (ML) Index measurement and apply it to the power plants to calculate the efficiency, eco-efficiency, and technological changes over the 8-year period (2003-2010) of restructuring in the power industry. The results reveal that although the restructuring had different effects on the individual power plants, the overall growth in the eco-efficiency of the sector was mainly due to advances in pure technology. We also assess the correlation between efficiency and eco-efficiency of the power plants, which indicates a close relationship between these two steps, thus lending support to the incorporation of environmental factors in efficiency analysis. © 2014 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stabilization of energy supply in Brazil has been a challenge for the operation of the National Interconnected System in face of hydrological and climatic variations. Thermoelectric plants have been used as an emergency source for periods of water scarcity. The utilization of fossil fuels, however, has elevated the cost of electricity. On the other hand, offshore wind energy has gained importance in the international context and is competitive enough to become a possibility for future generation in Brazil. In this scenario, the main goal of this thesis was to investigate the magnitude and distribution of offshore wind resources, and also verify the possibilities of complementing hydropower. A data series of precipitation from the Climatic Research Unit (CRU) Blended Sea Winds from the National Climatic Data Center (NCDC/NOAA) were used. According to statistical criteria, three types of complementarity were found in the Brazilian territory: hydro × hydro, wind × wind and hydro × wind. It was noted a significant complementarity between wind and hydro resources (r = -0.65), mainly for the hydrographical basins of the southeast and central regions with Northeastern Brazil winds. To refine the extrapolation of winds over the ocean, a method based on the Monin-Obukhov theory was used to model the stability of the atmospheric boundary layer. Objectively Analyzed Air-Sea Flux (OAFLUX) datasets for heat flux, temperature and humidity, and also sea level pressure data from NCEP/NCAR were used. The ETOPO1 from the National Geophysical Data Center (NGDC/NOAA) provided bathymetric data. It was found that shallow waters, between 0-20 meters, have a resource estimated at 559 GW. The contribution of wind resources to hydroelectric reservoir operation was investigated with a simplified hybrid wind-hydraulic model, and reservoir level, inflow, outflow and turbine production data. It was found that the hybrid system avoids drought periods, continuously saving water from reservoirs through wind production. Therefore, from the results obtained, it is possible to state that the good winds from the Brazilian coast can, besides diversifying the electric matrix, stabilize the hydrological fluctuations avoiding rationing and blackouts, reducing the use of thermal power plants, increasing the production cost and emission of greenhouse gases. Public policies targeted to offshore wind energy will be necessary for its full development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many countries have set challenging wind power targets to achieve by 2020. This paper implements a realistic analysis of curtailment and constraint of wind energy at a nodal level using a unit commitment and economic dispatch model of the Irish Single Electricity Market in 2020. The key findings show that significant reduction in curtailment can be achieved when the system non-synchronous penetration limit increases from 65% to 75%. For the period analyzed, this results in a decreased total generation cost and a reduction in the dispatch-down of wind. However, some nodes experience significant dispatch-down of wind, which can be in the order of 40%. This work illustrates the importance of implementing analysis at a nodal level for the purpose of power system planning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the last decade, wind power generation has seen rapid development. According to the U.S. Department of Energy, achieving 20\% wind power penetration in the U.S. by 2030 will require: (i) enhancement of the transmission infrastructure, (ii) improvement of reliability and operability of wind systems and (iii) increased U.S. manufacturing capacity of wind generation equipment. This research will concentrate on improvement of reliability and operability of wind energy conversion systems (WECSs). The increased penetration of wind energy into the grid imposes new operating conditions on power systems. This change requires development of an adequate reliability framework. This thesis proposes a framework for assessing WECS reliability in the face of external disturbances, e.g., grid faults and internal component faults. The framework is illustrated using a detailed model of type C WECS - doubly fed induction generator with corresponding deterministic and random variables in a simplified grid model. Fault parameters and performance requirements essential to reliability measurements are included in the simulation. The proposed framework allows a quantitative analysis of WECS designs; analysis of WECS control schemes, e.g., fault ride-through mechanisms; discovery of key parameters that influence overall WECS reliability; and computation of WECS reliability with respect to different grid codes/performance requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tämä diplomityö tutkii eri elinkaarihallinnan menetelmiä ja vertaa niitä TVO:n menetelmiin. Lisäksi TVO:n prosessin ongelmakohdat tunnistetaan ja niihin esitetään ratkaisuja. Vertailukohteina toimii ydinvoimateollisuuden lisäksi vesivoima, fossiiliset voimalaitokset sekä paperiteollisuus. Sähkön hinnan jatkaessa laskuaan on elinkaariajattelusta tullut ajankohtaista myös ydinvoimayhtiöille. Ydinvoimalaitoksien pitkän suunnitellun käyttöiän ansiosta laitoksen elinkaaren aikana voi tapahtua useita asioita, jotka vaikuttavat laitoksen investointitarpeisiin. Turvallisen sähköntuotannon varmistamiseksi eri laitososia on joko muokattava tai uusittava. Elinkaariajatteluun kuuluu tehokas laitoksen kunnon valvonta, laitoksen ikääntymiseen vaikuttavien ilmiöiden tunnistaminen, sekä ikääntymistä hillitsevien toimenpiteiden pitkän tähtäimen suunnittelu. Hyvällä ennakkosuunnittelulla pyritään varmistamaan se, että laitoksella voidaan tuottaa sähköä koko sen jäljellä olevan käyttöiän aikana. Kun tarpeiden tunnistus ja suunnittelu tehdään hyvissä ajoin mahdollistetaan myös investointien optimointi. Paras hyöty pyritään saamaan ajoittamalla oikeat investoinnit oikeaan aikaan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind energy is one of the most promising and fast growing sector of energy production. Wind is ecologically friendly and relatively cheap energy resource available for development in practically all corners of the world (where only the wind blows). Today wind power gained broad development in the Scandinavian countries. Three important challenges concerning sustainable development, i.e. energy security, climate change and energy access make a compelling case for large-scale utilization of wind energy. In Finland, according to the climate and energy strategy, accepted in 2008, the total consumption of electricity generated by means of wind farms by 2020, should reach 6 - 7% of total consumption in the country [1]. The main challenges associated with wind energy production are harsh operational conditions that often accompany the turbine operation in the climatic conditions of the north and poor accessibility for maintenance and service. One of the major problems that require a solution is the icing of turbine structures. Icing reduces the performance of wind turbines, which in the conditions of a long cold period, can significantly affect the reliability of power supply. In order to predict and control power performance, the process of ice accretion has to be carefully tracked. There are two ways to detect icing – directly or indirectly. The first way applies to the special ice detection instruments. The second one is using indirect characteristics of turbine performance. One of such indirect methods for ice detection and power loss estimation has been proposed and used in this paper. The results were compared to the results directly gained from the ice sensors. The data used was measured in Muukko wind farm, southeast Finland during a project 'Wind power in cold climate and complex terrain'. The project was carried out in 9/2013 - 8/2015 with the partners Lappeenranta university of technology, Alstom renovables España S.L., TuuliMuukko, and TuuliSaimaa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper is about the simulation of malfunctions in an onshore wind energy conversion system powered by a doubly fed induction generator with a two-level power converter, handling only the slip power. These malfunctions are analysed in order to be able to investigate the impact in the wind power system behaviour by comparison before, during and after the malfunctions. The malfunctions considered in the simulation includes are localized in the DC-link of the converter and in the phase change in rectifier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.