916 resultados para value creation and value capture
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
This paper sets out to examine how innovation enhances export competitiveness: The proposition that export volume becomes enhanced as more productivity-enhancing innovation is captured by the exporting economy is the focus of this study. From a Schumpeterian perspective, innovation can be characterized by continuous creation and subsequent diffusion of newer technologies on the basis of the exporters' existing capital stock. Then we highlight the theoretical possibility that concentration of innovative activities in a small group of "winner" economies would lead to larger shares of "winner" economies' exports of innovation-active commodities than those commodities for which technology involved is already mature. The world's export data corroborates this theoretical prediction overall, and a focus upon East Asia has revealed the region's increasing resort to technology-intensive commodity sectors, which has presumably been enabled through attracting technology-bearing inward foreign direct investment. Considering the overall gains from innovation, acceleration of full "cycle" of innovation and imitation might be a desirable option.
Resumo:
This paper presents a micro-model of knowledge creation and transfer in a small group of people. Our model incorporates two key aspects of the cooperative process of knowledge creation: (i) heterogeneity of people in their state of knowledge is essential for successful cooperation in the joint creation of new ideas, while (ii) the very process of cooperative knowledge creation a¤ects the heterogeneity of people through the accumulation of knowledge in common. The model features myopic agents in a pure externality model of interaction. In the two person case, we show that the equilibrium process tends to result in the accumulation of too much knowledge in common compared to the most productive state. Unlike the two-person case, in the four person case we show that the equilibrium process of knowledge creation may converge to the most productive state. Equilibrium paths are found analytically, and they are a discontinuous function of initial heterogeneity.
Resumo:
Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.
Resumo:
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices
Resumo:
Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.
Resumo:
In the C02 capture from power generation, the energy penalties for the capture are one of the main challenges. Nowadays, the post-combustion methods have energy penalties 10wer than the oxy combustion and pre-combustion technologies. One of the main disadvantages of the post combustion method is the fact that the capture ofC02at atmospheric pressure requires quite big equipment for the high flow rates of flue gas, and the 10w partial pressure of the CO2generates an important 10ss of energy. The A1lam cyc1e presented for NETPOWER gives high efficiencies in the power production and 10w energy penalties. A simulation of this cyc1e is made together with a simulation of power plants with pre-combustion and post-combustion capture and without capture for natural gas and forcoa1. The simulations give 10wer efficiencies than the proposed for NETPOWER For natural gas the efficiency is 52% instead of the 59% presented, and 33% instead of51% in the case of using coal as fuel. Are brought to light problems in the CO2compressor due the high flow ofC02that is compressed unti1300 bar to be recyc1ed into the combustor.
Resumo:
Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.
Resumo:
Resource analysis aims at inferring the cost of executing programs for any possible input, in terms of a given resource, such as the traditional execution steps, time ormemory, and, more recently energy consumption or user defined resources (e.g., number of bits sent over a socket, number of database accesses, number of calls to particular procedures, etc.). This is performed statically, i.e., without actually running the programs. Resource usage information is useful for a variety of optimization and verification applications, as well as for guiding software design. For example, programmers can use such information to choose different algorithmic solutions to a problem; program transformation systems can use cost information to choose between alternative transformations; parallelizing compilers can use cost estimates for granularity control, which tries to balance the overheads of task creation and manipulation against the benefits of parallelization. In this thesis we have significatively improved an existing prototype implementation for resource usage analysis based on abstract interpretation, addressing a number of relevant challenges and overcoming many limitations it presented. The goal of that prototype was to show the viability of casting the resource analysis as an abstract domain, and howit could overcome important limitations of the state-of-the-art resource usage analysis tools. For this purpose, it was implemented as an abstract domain in the abstract interpretation framework of the CiaoPP system, PLAI.We have improved both the design and implementation of the prototype, for eventually allowing an evolution of the tool to the industrial application level. The abstract operations of such tool heavily depend on the setting up and finding closed-form solutions of recurrence relations representing the resource usage behavior of program components and the whole program as well. While there exist many tools, such as Computer Algebra Systems (CAS) and libraries able to find closed-form solutions for some types of recurrences, none of them alone is able to handle all the types of recurrences arising during program analysis. In addition, there are some types of recurrences that cannot be solved by any existing tool. This clearly constitutes a bottleneck for this kind of resource usage analysis. Thus, one of the major challenges we have addressed in this thesis is the design and development of a novel modular framework for solving recurrence relations, able to combine and take advantage of the results of existing solvers. Additionally, we have developed and integrated into our novel solver a technique for finding upper-bound closed-form solutions of a special class of recurrence relations that arise during the analysis of programs with accumulating parameters. Finally, we have integrated the improved resource analysis into the CiaoPP general framework for resource usage verification, and specialized the framework for verifying energy consumption specifications of embedded imperative programs in a real application, showing the usefulness and practicality of the resulting tool.---ABSTRACT---El Análisis de recursos tiene como objetivo inferir el coste de la ejecución de programas para cualquier entrada posible, en términos de algún recurso determinado, como pasos de ejecución, tiempo o memoria, y, más recientemente, el consumo de energía o recursos definidos por el usuario (por ejemplo, número de bits enviados a través de un socket, el número de accesos a una base de datos, cantidad de llamadas a determinados procedimientos, etc.). Ello se realiza estáticamente, es decir, sin necesidad de ejecutar los programas. La información sobre el uso de recursos resulta muy útil para una gran variedad de aplicaciones de optimización y verificación de programas, así como para asistir en el diseño de los mismos. Por ejemplo, los programadores pueden utilizar dicha información para elegir diferentes soluciones algorítmicas a un problema; los sistemas de transformación de programas pueden utilizar la información de coste para elegir entre transformaciones alternativas; los compiladores paralelizantes pueden utilizar las estimaciones de coste para realizar control de granularidad, el cual trata de equilibrar el coste debido a la creación y gestión de tareas, con los beneficios de la paralelización. En esta tesis hemos mejorado de manera significativa la implementación de un prototipo existente para el análisis del uso de recursos basado en interpretación abstracta, abordando diversos desafíos relevantes y superando numerosas limitaciones que éste presentaba. El objetivo de dicho prototipo era mostrar la viabilidad de definir el análisis de recursos como un dominio abstracto, y cómo se podían superar las limitaciones de otras herramientas similares que constituyen el estado del arte. Para ello, se implementó como un dominio abstracto en el marco de interpretación abstracta presente en el sistema CiaoPP, PLAI. Hemos mejorado tanto el diseño como la implementación del mencionado prototipo para posibilitar su evolución hacia una herramienta utilizable en el ámbito industrial. Las operaciones abstractas de dicha herramienta dependen en gran medida de la generación, y posterior búsqueda de soluciones en forma cerrada, de relaciones recurrentes, las cuales modelizan el comportamiento, respecto al consumo de recursos, de los componentes del programa y del programa completo. Si bien existen actualmente muchas herramientas capaces de encontrar soluciones en forma cerrada para ciertos tipos de recurrencias, tales como Sistemas de Computación Algebraicos (CAS) y librerías de programación, ninguna de dichas herramientas es capaz de tratar, por sí sola, todos los tipos de recurrencias que surgen durante el análisis de recursos. Existen incluso recurrencias que no las puede resolver ninguna herramienta actual. Esto constituye claramente un cuello de botella para este tipo de análisis del uso de recursos. Por lo tanto, uno de los principales desafíos que hemos abordado en esta tesis es el diseño y desarrollo de un novedoso marco modular para la resolución de relaciones recurrentes, combinando y aprovechando los resultados de resolutores existentes. Además de ello, hemos desarrollado e integrado en nuestro nuevo resolutor una técnica para la obtención de cotas superiores en forma cerrada de una clase característica de relaciones recurrentes que surgen durante el análisis de programas lógicos con parámetros de acumulación. Finalmente, hemos integrado el nuevo análisis de recursos con el marco general para verificación de recursos de CiaoPP, y hemos instanciado dicho marco para la verificación de especificaciones sobre el consumo de energía de programas imperativas embarcados, mostrando la viabilidad y utilidad de la herramienta resultante en una aplicación real.
Resumo:
Landscape units based on the visual features of the relief have been distinguished in the “Barranco del Río Dulce Natural Park” (Spain). These units are geomorphic entities composed of several elementary landforms and characterized by a visual internal homogeneity, and contrast with other landscape units in their location, height, profile and gradients, reflecting their different evolution and genesis. Landscape units bear some subjectivity in their definition and in their boundary location due to the overlapping of geomorphic processes along time. Visual, compositional and conventional boundaries have been used for mapping. Neogene landscape evolution mainly occurred through thrust faulting at the Iberian Ranges-Tagus Basin boundary, driving tectonic uplift and erosion of the Ranges and correlative sedimentation in the Basin. Erosion of the Ranges occurred with the development of planation surfaces, leaving minor isolated reliefs in the upland plains landscape. The lowering of the base level, caused by the endorheic–exorheic transition of the Tagus Basin in the Pliocene, originates fluvial entrenchment and water table lowering with development of the first fluvial valleys and the capture of karstic depressions. Two subsequent phases of renewed fluvial incision (Pleistocene) lead to abandonment of some Pliocene valleys, fluvial captures, and development and reincision of tributaries
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
Summary: Overall the monetary pillar of the EMU project has worked well so that it is incorrect to speak of a 'euro' crisis though it is at the epicentre of the present crisis. The origins of the problems it is facing have more to do with the economic component, particularly because of the breach of budgetary rules which points to a failure of politics. Hence the solution must be political, namely a strong commitment by governments to achieve balanced budgets and implement structural reforms so as to lay the basis for improved competitiveness, job creation and sustainable growth.
Resumo:
This study provides an ex-post evaluation of the EU copyright framework as provided by EU Directive 29/2001 on Copyright in the Information Society (InfoSoc Directive) and related legislation, focusing on four key criteria: effectiveness, efficiency, coherence and relevance. The evaluation finds that the EU copyright framework scores poorly on all four accounts. Of the four main goals pursued by the InfoSoc, only the alignment with international legislation can be said to have been fully achieved. The wider framework on copyright still generates costs by inhibiting content production, distribution and creation and generating productive, allocative and dynamic inefficiencies. Several problems also remain in terms of both internal and external coherence. Finally, espite its overall importance and relevance as a domain of legislation in the fields of content and media, the EU copyright framework is outdated in light of technological developments. Policy options to reform the current framework are provided in the CEPS companion study on the functioning and efficiency of the Digital Single Market in the field of copyright (CEPS Special Report No. 121/November 2015).
Resumo:
It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.