956 resultados para undergraduation in Chemistry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acompanha: Sequências didáticas para o ensino de teorias atômicas e elementos químicos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes induced by PA on nucleic acid (NA) conformation and synthesis is proven to be a major reason for PA essentiality (1-3). However, PA interactions with other polyanions, for instance polyanionic membrane lipid bilayers and glyosaminoglycans have received less attention (3-4). The functional importance of these interactions still is an obscure but interesting area of cell and molecular biology, especially in mammalian cells for which specific PA transport systems are not fully characterized (5). In mammals, activity and turnover of the polyamine (PA) synthesis key enzyme is controlled by a set of proteins: Antizymes (OAZ1-3) and antizyme inhibitors (AZIN1 and 2). It is demonstrated that AOZ modulate polyamine uptake (6), and that PA transport to mitochondria is linked to the respiratory chain state and modulates mitochondrial permeability transition (7). Antizyme expression variants have been located in mitochondria, being proposed as a proapoptotic factor (7-8). AZIN 2 is only expressed in a reduced set of tissues that includes mast cells, where it is associated to mast cell granules membrane (9). This fact, together to the abnormalities observed in bone marrow derived mast cell granules when they are differentiated under restricted PA synthesis conditions (10 and unpublished results), point out to important roles of PA and their related proteins in structure and function of mast cell granules. We will also present novel biophysical results on tripartite interactions of PA that remark the interest of the characterization of PA interactions with lipid bilayers for biomedicine and biotechnology. Thus, the information reported in this paper integrates previously reported information with our still unpublished results, all indicating that PA and their related proteins also are important factors for structure and dynamics of biological membranes and their associated functions essential in human physiology; for instance, solute interchange with the environment (uptake and secretion), oxidative metabolism and apoptosis. The importance of these involved processes for human homeostasis claim for further research efforts. 1. Ruiz-Chica J, Medina MA, Sánchez-Jiménez F and Ramírez FJ (2001) Fourier Transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophysical J. 80:443-454. 2. Lightfoot HL, Hall J (2014) Endogenous polyamine function--the RNA perspective. Nucleic Acids Res. 42:11275-11290. 3. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 42:39-51. 4. Finger S, Schwieger C, Arouri A, Kerth A, Blume A (2014) Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance. Biol Chem. 395:769-778. 5. Poulin R, Casero RA, Soulet D. (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids. 42:711-723. 6. Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem. 4:47-61. 7. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393-403. 8. Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC (2006) Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases' cascade. Apoptosis 11:1773-1788. 9. Kanerva K, Lappalainen J, Mäkitie LT, Virolainen S, Kovanen PT, Andersson LC (2009). Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS One 31:e6858. 10. García-Faroldi G, Rodríguez CE, Urdiales JL, Pérez-Pomares JM, Dávila JC, Pejler G, Sánchez-Jiménez F, Fajardo I (2010) Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 30:e15071.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O trabalho apresentado, foi realizado no âmbito do mestrado em Química para o ensino, da Universidade de Évora e tem como tema " Moléculas Simples de Aplicação na Medicina". A abordagem deste tema deve-se à necessidade cada vez maior de um ensino que motive os alunos e lhes proporcione um gosto maior pelo estudo das ciências, uma vez que cada vez mais os jovens estudantes revelam pouca motivação e gosto pelo estudo das áreas científicas quer ao nível do ensino secundário quer ao nível do ensino superior. Pretende-se também tentar compreender e explicar o porquê das suas desmotivações e tentar adaptar novas abordagens a temas que suscitem nos jovens um maior interesse, uma melhor compreensão da importância das ciências, da tecnologia na vida quotidiana de todos nós no que respeita ao nosso bem-estar e à nossa saúde. Numa primeira parte é feita uma revisão sobre os principais conteúdos propostos a desenvolver em sala de aula, conteúdos esses que sustentam o estudo do xénon como anestésico e dos perfluorocarbonetos como substitutos do sangue. A segunda parte integra um programa orientador, seguindo as metodologias e estrutura do programa homologado pelo ME para o 12º ano de escolaridade, e protocolos de algumas actividades de carácter experimental laboratorial propostas. Estas actividades têm como finalidade estimular a curiosidade e facilitar a consolidação das matérias. ABSTRACT: The present study was carried out under the Master's Degree in Chemistry for Teaching, taught at the University of Évora under the theme "lmplementation of Simple Molecules in Medicine". The approach to this issue is due to an increasing need for teaching that motivates students and sharpen their senses for the study of science because, increasingly, young students show little motivation and passion for the study of science, both at secondary school and higher education terms. The aim is also trying to understand and explain the reason of their discouragement and try new approaches to issues that raise young in a better understanding of the importance of science and technology in everyday life for all of us in what concerns to our welfare and our health. ln the first part there is an overview of the major content areas to develop in the classroom. These contents support the study of xenon as an anesthetic and perfluorocarbons as blood substitutes. The second part includes the syllabus, following the methodologies and structure of the curriculum approved by the ME to the 12th grade and protocols of some activities for an experimental laboratory. These activities intend to stimulate curiosity and facilitate the consolidation of materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the PhD program in chemistry at the University of Bologna, the environmental sustainability of some industrial processes was studied through the application of the LCA methodology. The efforts were focused on the study of processes under development, in order to assess their environmental impacts to guide their transfer on an industrial scale. Processes that could meet the principles of Green Chemistry have been selected and their environmental benefits have been evaluated through a holistic approach. The use of renewable sources was assessed through the study of terephthalic acid production from biomass (which showed that only the use of waste can provide an environmental benefit) and a new process for biogas upgrading (whose potential is to act as a carbon capture technology). Furthermore, the basis for the development of a new methodology for the prediction of the environmental impact of ionic liquids has been laid. It has already shown good qualities in identifying impact trends, but further research on it is needed to obtain a more reliable and usable model. In the context of sustainable development that will not only be sector-specific, the environmental performance of some processes linked to the primary production sector has also been evaluated. The impacts of some organic farming practices in the wine production were analysed, the use of the Cereal Unit parameter was proposed as a functional unit for the comparison of different crop rotations, and the carbon footprint of school canteen meals was calculated. The results of the analyses confirm that sustainability in the industrial production sector should be assessed from a life cycle perspective, in order to consider all the flows involved during the different phases. In particular, it is necessary that environmental assessments adopt a cradle-to-gate approach, to avoid shifting the environmental burden from one phase to another.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Noise is constant presence in measurements. Its origin is related to the microscopic properties of matter. Since the seminal work of Brown in 1828, the study of stochastic processes has gained an increasing interest with the development of new mathematical and analytical tools. In the last decades, the central role that noise plays in chemical and physiological processes has become recognized. The dual role of noise as nuisance/resource pushes towards the development of new decomposition techniques that divide a signal into its deterministic and stochastic components. In this thesis I show how methods based on Singular Spectrum Analysis have the right properties to fulfil the previously mentioned requirement. During my work I applied SSA to different signals of interest in chemistry: I developed a novel iterative procedure for the denoising of powder X-ray diffractograms; I “denoised” bi-dimensional images from experiments of electrochemiluminescence imaging of micro-beads obtaining new insight on ECL mechanism. I also used Principal Component Analysis to investigate the relationship between brain electrophysiological signals and voice emission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concentrations of cations (Na(+), Ca(2+), Mg(2+), K(+), NH(4) (+)), anions (HCO(3) (-), Cl(-), NO(3) (-), SO(4) (2-), PO(4) (3-)) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20-30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years-a plausible consequence of global climate change-may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the current work a Green Analytical Chemistry (GAC) procedure for photometric determination of orthophosphate in river water at mu g L-1 concentration level is described. The flow system module and the LED-based photometer were assembled together to constitute a compact unit in order to allow that a flow cell with optical path-length of 100mm was coupled to them. The photometric procedure based on the molybdenum blue method was implemented employing the multicommuted flow injection analysis approach, which provided facilities to allow reduction of reagent consumption and as well as waste generation. Aiming to prove the usefulness of the system, orthophosphate in river and tap waters was determined. Accuracy was ascertained by spiking samples with orthophosphate solution yielding recoveries ranging from 96% up to 107%. Other profitable features such as a wide linear response range between 10 to 800 mu g L-1 [image omitted]; a detection limit (3 sigma criterion) of 2.4 mu g L-1 [image omitted]; a relative standard deviation (n=7) of 2% using a typical water sample with concentration of 120 mu g L-1 [image omitted]; reagent consumption of 3.0mg ammonium molybdate, 0.3mg hydrazine sulfate, and 0.03mg stannous chloride per determination; a waste generation of 2.4mL per determination; and a sampling throughput of 20 determination per hours were also achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics. ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.