866 resultados para the Fuzzy Colour Segmentation Algorithm
Resumo:
A key capability of data-race detectors is to determine whether one thread executes logically in parallel with another or whether the threads must operate in series. This paper provides two algorithms, one serial and one parallel, to maintain series-parallel (SP) relationships "on the fly" for fork-join multithreaded programs. The serial SP-order algorithm runs in O(1) amortized time per operation. In contrast, the previously best algorithm requires a time per operation that is proportional to Tarjan’s functional inverse of Ackermann’s function. SP-order employs an order-maintenance data structure that allows us to implement a more efficient "English-Hebrew" labeling scheme than was used in earlier race detectors, which immediately yields an improved determinacy-race detector. In particular, any fork-join program running in T₁ time on a single processor can be checked on the fly for determinacy races in O(T₁) time. Corresponding improved bounds can also be obtained for more sophisticated data-race detectors, for example, those that use locks. By combining SP-order with Feng and Leiserson’s serial SP-bags algorithm, we obtain a parallel SP-maintenance algorithm, called SP-hybrid. Suppose that a fork-join program has n threads, T₁ work, and a critical-path length of T[subscript â]. When executed on P processors, we prove that SP-hybrid runs in O((T₁/P + PT[subscript â]) lg n) expected time. To understand this bound, consider that the original program obtains linear speed-up over a 1-processor execution when P = O(T₁/T[subscript â]). In contrast, SP-hybrid obtains linear speed-up when P = O(√T₁/T[subscript â]), but the work is increased by a factor of O(lg n).
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
The method of extracting effective atomic orbitals and effective minimal basis sets from molecular wave function characterizing the state of an atom in a molecule is developed in the framework of the "fuzzy" atoms. In all cases studied, there were as many effective orbitals that have considerable occupation numbers as orbitals in the classical minimal basis. That is considered to be of high conceptual importance
Resumo:
A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals
Resumo:
LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.
Resumo:
A new heuristic for the Steiner Minimal Tree problem is presented here. The method described is based on the detection of particular sets of nodes in networks, the “Hot Spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used CIS comparison terms in the experimental analysis which demonstrates the goodness of the heuristic discussed in this paper.
Resumo:
A new heuristic for the Steiner minimal tree problem is presented. The method described is based on the detection of particular sets of nodes in networks, the “hot spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used as comparison terms in the experimental analysis which demonstrates the capability of the heuristic discussed
Resumo:
Existing research investigating interactions between visual and oral sensory cues has tended to use model food systems. In contrast, this study compared product quality assessments of corn-fed and wheat-fed chicken products among persons recruited in Northern Ireland. Three approaches have been adopted to investigate the effect of colour upon consumer choice of chicken: sensory assessment under normal lighting; focus group discussion; and sensory assessment under controlled lighting conditions. Initial consumer sensory assessment indicated that wheat-fed chicken was perceived to be tenderer and to have a more intense flavour than that which was corn-fed. Qualitative enquiry discerned that this was because consumers perceived the yellow colour of corn-fed chicken negatively. Yellow-coloured corn-fed chicken was therefore again compared with wheat-fed chicken in terms of flavour, texture and overall liking with the flesh colour disguised by means of controlled lighting. Quality ratings for corn-fed chicken were more positive when the yellow flesh colour was disguised, with corn-fed chicken judged to be tenderer than wheat-fed chicken and more flavoursome. This study illustrates the importance of using a combination of methods to gain insight into interactions between different sensory modalities in consumer quality judgements and adds to previous research on the importance of colour upon consumer choice of real foods. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Williams syndrome (WS) is a developmental disorder in which visuo-spatial cognition is poor relative to verbal ability. At the level of visuo-spatial perception, individuals with WS can perceive both the local and global aspects of an image. However, the manner in which local elements are integrated into a global whole is atypical, with relative strengths in integration by luminance, closure, and alignment compared to shape, orientation and proximity. The present study investigated the manner in which global images are segmented into local parts. Segmentation by seven gestalt principles was investigated: proximity, shape, luminance, orientation, closure, size (and alignment: Experiment I only). Participants were presented with uniform texture squares and asked to detect the presence of a discrepant patch (Experiment 1) or to identify the form of a discrepant patch as a capital E or H (Experiment 2). In Experiment 1, the pattern and level of performance of the WS group did not differ from that of typically developing controls, and was commensurate with the general level of non-verbal ability observed in WS. These results were replicated in Experiment 2, with the exception of segmentation by proximity, where individuals with WS demonstrated superior performance relative to the remaining segmentation types. Overall, the results suggest that, despite some atypical aspects of visuo-spatial perception in WS, the ability to segment a global form into parts is broadly typical in this population. In turn, this informs predictions of brain function in WS, particularly areas V1 and V4. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS). compensation. for block base motion On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduce hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms. Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
This paper describes a new strategy for the blind equalization so that the blind Constant Module Algorithm (CMA) can be smoothly switched to the decision- directed (DD) equalization. First, we propose a combination approach by running the CMA and DD equalization simultaneously to obtain a smooth switch between them. We then describe an "anchoring process" to eliminate the effect from the CMA at the steady state to achieve low residual noise. The overall equalization can be regarded as the DD equalization being anchored by the combination approach. Numerical simulations are given to verify the proposed strategy.
Resumo:
The convex combination is a mathematic approach to keep the advantages of its component algorithms for better performance. In this paper, we employ convex combination in the blind equalization to achieve better blind equalization. By combining the blind constant modulus algorithm (CMA) and decision directed algorithm, the combinative blind equalization (CBE) algorithm can retain the advantages from both. Furthermore, the convergence speed of the CBE algorithm is faster than both of its component equalizers. Simulation results are also given to verify the proposed algorithm.
Resumo:
In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.
Resumo:
In this brief, we propose an orthogonal forward regression (OFR) algorithm based on the principles of the branch and bound (BB) and A-optimality experimental design. At each forward regression step, each candidate from a pool of candidate regressors, referred to as S, is evaluated in turn with three possible decisions: 1) one of these is selected and included into the model; 2) some of these remain in S for evaluation in the next forward regression step; and 3) the rest are permanently eliminated from S. Based on the BB principle in combination with an A-optimality composite cost function for model structure determination, a simple adaptive diagnostics test is proposed to determine the decision boundary between 2) and 3). As such the proposed algorithm can significantly reduce the computational cost in the A-optimality OFR algorithm. Numerical examples are used to demonstrate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for block base motion compensation. On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduced hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms, Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.