490 resultados para sticky floors
Resumo:
From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.
Resumo:
Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are 'ropy' or 'rough' similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ~2000 m**2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.
Resumo:
Manganese-iron oxide concretions are presently forming on Patrick Sill in upper Jervis Inlet. The marine geology of Patrick Sill and the adjoining basins (Queen's Reach and Princess Royal Reach) was studied to define the environment in which the concretions form. The river at the inlet head is the principal source of sediment to the upper basin. The average grain size of surficial bottom sediments within this basin decreases uniformly with distance from the source. Patrick Sill separates the upper from the lower basin. The sediment distribution pattern within the lower basin differs markedly from the upper basin as there is no dominant source of material but rather many localized sources. Abundant shallow marine faunal remains recovered in deep water sediment samples indicate that sediments deposited as deltas off river and stream mouths periodically slump to the basin floors. Geologic and optical turbidity information for the upper basin can best be explained by slumping from the delta at the inlet head with the initiation of turbidity or density currents. Patrick Sill appears to create a downstream barrier to this flow. The mineralogy of the bottom sediments indicates derivation from a granitic terrain. If this is so, the sediments presently being deposited in both basins are reworked glacial materials initially derived by glacial action outside the present watershed. Upper Jervis Inlet is mapped as lying within a roof pendant of pre-batholithic rocks, principally slates. Patrick Sill is thought to be a bedrock feature mantled with Pleistocene glacial material. The accumulation rate of recent sediments on the sill is low especially in the V-notch or medial depression. The manganese-iron oxide concretions are forming within the depression and apparently nowhere else in the study area. Also forming within the depression are crusts of iron oxide and what are tentatively identified as glauconite-montmorillonoid pellets. The concretions are thought to form by precipitation of manganese-iron oxides on pebbles and cobbles lying at the sediment water interface. The oxide materials are mobile in the reducing environment of the underlying clayey-sand sediment but precipitate on contact with the oxygenating environment of the surficial sediments. The iron crusts are thought to be forming on extensive rocky surfaces above the sediment water interface. The overall appearance and evidence of rapid formation of the crusts suggests they formed from a gel in sea water. Reserves of manganese-iron concretions on Patrick Sill were estimated to be 117 metric tons. Other deposits of concretions have recently been found in other inlets and in the Strait of Georgia but, to date, the extent of these has not been determined.
Resumo:
Using a Dynamic General Equilibrium (DGE) model, this study examines the effects of monetary policy in economies where minimum wages are bound. The findings show that the monetary-policy effect on a binding-minimum-wage economy is relatively small and quite persistent. This result suggests that these two characteristics of monetary policy in the minimum-wage model are rather different from those in the union-negotiation model which is often assumed to account for industrial economies.
Resumo:
Burley tobacco production in Malawi was liberalized to permit production by smallholders in the early 1990s. The purpose of this paper is to show which smallholders began producing burley tobacco after liberalization and which smallholders still continue to produce it. Analysis of the characteristics of burley tobacco producers shows that only smallholders who had adequate farm size and adequate funds could start to produce it. With regard to the farm size requirements, only smallholders who had enough acreage to sell tobacco on the auction floors and who had enough acreage to rotate crops could start to produce. With regard to the financial requirements, only smallholders who could procure funds through informal institutions or who possessed their own capital to meet the necessary agricultural expenditures could start. So, it was only the wealthy households which could start to produce tobacco after liberalization and continue to produce it.
Resumo:
One of the common pathologies of brickwork masonry structural elements and walls is the cracking associated with the differential settlements and/or excessive deflections of the slabs along the life of the structure. The scarce capacity of the masonry in order to accompany the structural elements that surround it, such as floors, beams or foundations, in their movements makes the brickwork masonry to be an element that frequently presents this kind of problem. This problem is a fracture problem, where the wall is cracked under mixed mode fracture: tensile and shear stresses combination, under static loading. Consequently, it is necessary to advance in the simulation and prediction of brickwork masonry mechanical behaviour under tensile and shear loading. The quasi-brittle behaviour of the brickwork masonry can be studied using the cohesive crack model whose application to other quasibrittle materials like concrete has traditionally provided very satisfactory results.
Resumo:
Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards UNE EN ISO 140-4 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. A parameter that allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at different points of the room. In this work, for a wide number of measurements following standards UNE EN ISO 140-4 we analyzed qualitatively the behaviour of the standard deviation for L1 and L2. The study of sound fields in enclosed spaces is very difficult. There are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. In general, we observe that the L1 and L2 standard deviations contain peaks and dips independent on characteristics of the rooms at single frequencies that could correspond to critical frequencies of walls, floors and windows or even to temporal alterations of the sound field. Also, in most measurements according to UNE EN ISO 140-4 a large similitude between L1 and L2 standard deviation is found. We believe that such result points to a coupled system between source and receiving rooms, mainly at low frequencies the shape of the L1 and L2 standard deviations is comparable to the velocity level standard deviation on a wall
Resumo:
El proyecto tiene como objetivo realizar el diseño de la cimentación de Torre Reforma. Torre Reforma se ubica en Av. Paseo de la Reforma No. 483, en la esquina con Rio Elba, en la ciudad de México. Dicha ubicación geotécnicamente corresponde a lo que se conoce como la Zona de Lago. La superficie construida será de 2780 m2 y el edificio contará con una altura de 244 m y un total de 57 plantas. Por debajo del nivel de calle el edificio constará de 10 niveles de sótano destinados a aparcamiento. Partiendo de los parámetros geotécnicos del terreno, el proyecto consistirá en calcular una parte de la cimentación empleada en este edificio. Este proyecto se podrá utilizar como guía para realizar cimentaciones parecidas para otros edificios. ABSTRACT The objective of this Project is to make the design of the foundation of Torre Reforma. Torre Reforma is located in Av. Paseo de la Reforma No. 483, on the corner with Río Elba in México City. Geotechnically this location corresponds to what it is known as “la Zona del Lago” or Lake Zone. The constructed area is of 2780 m2 and the building will have a height of 244 m and a total of 57 floors. Below street level the building will include ten basement levels for parking. Based on the geotechnical parameters of the site, the project will consist in calculating a part of the foundation used in this building. This project will be able to be used as a guide for future projects of foundations of buildings in similar conditions.
Resumo:
Field studies were conducted in walk-in tunnels to determine the flying capacity in the presence and absence of crop, of the parasitoid Psyttalia concolor and the predator Chrysoperla carnea under a UV-absorbent net (Bionet®). Yellow sticky cards were used for insect recovery but neither P. concolor nor C. carnea were very attracted to them, thus captures were too low to permit any meaningful comparisons. Bionet® did not seem to affect the mobility of any natural enemy irrespective of the trap location and monitoring hour. Climatic conditions inside nets were very extreme (average temperatures very high and relative humidity very low) threatening insect survival. New experiments are being developed, trying to find new attractants that permit a significant capture of both natural enemies.
Resumo:
Esta Tesis plantea la pregunta de si el uso de morteros con parafinas microencapsuladas combinado con colectores solares térmicos puede reducir el consumo de energías convencionales, en un sistema tradicional de suelo radiante. Se pretende contribuir al conocimiento acerca del efecto que produce en el edificio, el calor latente acumulado en suelos radiantes, utilizando morteros de cemento Portland con material de cambio de fase (PCM), en conjunto con la energía solar. Para cumplir con este propósito, la investigación se desarrolla considerando diversos aspectos. En primer lugar, se revisa y analiza la documentación disponible en la actualidad, de almacenamiento de energía mediante calor latente en la construcción, y en particular la aplicación de microcápsulas de PCM en morteros y suelos radiantes. También se revisa la documentación relacionada con la aplicación de la energía solar térmica y en suelo radiante. Se analiza la normativa vigente respecto al material, a los colectores solares y al suelo radiante. Se verifica que no hay normativa relacionada con mortero-PCM, debido a esto se aplica en la investigación una adaptación de la existente. La fase experimental desarrollada esta principalmente dirigida a la cuantificación, caracterización y evaluación de las propiedades físicas, mecánicas y térmicas del mortero de cemento Portland con parafinas microencapsuladas. Los resultados obtenidos y su análisis, permiten conocer el comportamiento de este tipo de morteros, con las diferentes variables aplicadas en la investigación. Además, permite disponer de la información necesaria, para crear una metodología para el diseño de morteros con parafina microencapsulada, tanto del punto de vista de su resistencia a la compresión y contenido de PCM, como de su comportamiento térmico como acumulador de calor. Esto se logra procesando la información obtenida y generando modelos matemáticos, para dosificar mezclas, y predecir la acumulación de calor en función de su composición. Se determinan los tipos y cantidades de PCM, y el cemento más adecuado. Se obtienen importantes conclusiones respecto a los aspectos constructivos a considerar en la aplicación de morteros con PCM, en suelo radiante. Se analiza y evalúa la demanda térmica que se puede cubrir con el suelo radiante, utilizando morteros con parafina microencapsulada, a través de la acumulación de energía solar producida por colectores solares, para condiciones climáticas, técnicas y tipologías constructivas específicas. Se determina que cuando los paneles cubren más de 60 % de la demanda por calefacción, se puede almacenar en los morteros con PCM, el excedente generado durante el día. Se puede cubrir la demanda de acumulación de energía con los morteros con PCM, en la mayoría de los casos analizados. Con esto, se determina que el uso de morteros con PCM, aporta a la eficiencia energética de los edificios, disminuyendo el consumo de energías convencionales, reemplazándola por energía solar térmica. En esta investigación, el énfasis está en las propiedades del material mortero de cemento-PCM y en poder generar metodologías que faciliten su uso. Se aborda el uso de la energía solar, para verificar que es posible su acumulación en morteros con PCM aplicados en suelo radiante, posibilitando el reemplazo de energías convencionales. Quedan algunos aspectos de la aplicación de energía solar a suelo radiante con morteros con PCM, que no han sido tratados con la profundidad que requieren, y que resultan interesantes de evaluar en este tipo de aplicaciones constructivas, como entre otros, los relacionados con la cuantificación de los ahorros de energía en las diferentes estaciones del año, de la estabilización de temperaturas internas, su análisis de costo y la optimización de este tipo de sistemas para utilización en verano, los que dan pie para otras Tesis o proyectos de investigación. ABSTRACT This Thesis proposes the question of whether the use of mortars with microencapsulated paraffin combined with solar thermal collectors can reduce conventional energy consumption in a traditional heating floor system. It aims to contribute to knowledge about the effect that it has on the building, the latent heat accumulated in heating floor, using Portland cement mortars with phase change material (PCM), in conjunction with solar energy. To fulfill this purpose, the research develops it considering various aspects. First, it reviews and analyzes the documentation available today, about energy storage by latent heat in the building, and in particular the application of PCM microcapsules in mortars and heating floors. It also reviews the documentation related to the application of solar thermal energy and heating floor. Additionally, it analyzes the current regulations regarding to material, solar collectors and heating floors. It verifies that there aren’t regulations related to PCM mortar, due to this, it applies an adaptation in the investigation. The experimental phase is aimed to the quantification, mainly, characterization and evaluation of physical, mechanical and thermal properties of Portland cement mortar with microencapsulated paraffin. The results and analysis, which allow us to know the behavior of this type of mortars with different variables applied in research. It also allows having the information necessary to create a methodology for designing mortars with microencapsulated paraffin, both from the standpoint of its resistance to compression and PCM content, and its thermal performance as a heat accumulator. This accomplishes by processing the information obtained, and generating mathematical models for dosing mixtures, and predicting heat accumulation depending on their composition. The research determines the kinds and amounts of PCM, and the most suitable cement. Relevant conclusions obtain it regarding constructive aspects to consider in the implementation of PCM mortars in heating floor. Also, it analyzes and evaluates the thermal demand that it can be covered in heating floor using microencapsulated paraffin mortars, through the accumulation of solar energy produced by solar collectors to weather conditions, technical and specific building typologies. It determines that if the panels cover more than 60% of the demand for heating, the surplus generated during the day can be stored in PCM mortars. It meets the demand of energy storage with PCM mortars, in most of the cases analyzed. With this, it determines that the use of PCM mortars contributes to building energy efficiency, reducing consumption of conventional energy, replacing it with solar thermal energy. In this research approaches the use of solar energy to determine that it’s possible to verify its accumulation in PCM mortars applied in heating floor, enabling the replacement of conventional energy. The emphasis is on material properties of PCM mortar and, in order to generate methodologies to facilitate their use. There are some aspects of solar energy application in PCM mortars in heating floor, which have not been discussed with the depth required, and that they are relevant to evaluate in this kind of construction applications, including among others: the applications related to the energy savings quantification in different seasons of the year, the stabilizing internal temperatures, its cost analysis and optimization of these systems for use in summer, which can give ideas for other thesis or research projects.
Resumo:
On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 2 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of some of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in unreinforced masonry buildings ranging from 3 to 8 floors in height. First, a brief description of the local building practices of masonry buildings is given. Then, the most important failure types of masonry buildings are described and discussed. After that, a more detailed analysis of one particular building is presented.
Resumo:
During the last two decades the topic of human induced vibration has attracted a lot of attention among civil engineering practitioners and academics alike. Usually this type of problem may be encountered in pedestrian footbridges or floors of paperless offices. Slender designs are becoming increasingly popular, and as a consequence, the importance of paying attention to vibration serviceability also increases. This paper resumes the results obtained from measurements taken at different points of an aluminium catwalk which is 6 m in length by 0.6 m in width. Measurements were carried out when subjecting the structure to different actions:1)Static test: a steel cylinder of 35 kg was placed in the middle of the catwalk; 2)Dynamic test: this test consists of exciting the structure with singles impulses; 3)Dynamic test: people walking on the catwalk. Identification of the mechanical properties of the structure is an achievement of the paper. Indirect methods were used to estimate properties including the support stiffness, the beam bending stiffness, the mass of the structure (using Rayleigh method and iterative matrix method), the natural frequency (using the time domain and frequency domain analysis) and the damping ratio (by calculating the logarithmic decrement). Experimental results and numerical predictions for the response of an aluminium catwalk subjected to walking loads have been compared. The damping of this light weight structure depends on the amplitude of vibration which complicates the tuning of a structural model. In the light of the results obtained it seems that the used walking load model is not appropriate as the predicted transient vibration values (TTVs) are much higher than the measured ones.
Resumo:
Este proyecto trata de completar un estudio sobre la viabilidad de una instalación de turbina de eje vertical, en una azotea de un edificio de 6 plantas en el centro de la ciudad de Madrid. Está basado en la comunidad de vecinos de la calle de Lagasca 106 de Madrid, y se realiza de forma global, con objeto de que sirva como ejemplo a futuros estudios a realizar en esta área, incluyendo todas las dificultades y problemas que este tipo de proyectos muestran en su viabilidad. Los aspectos que vamos a abordar son: Demostración de que una turbina de eje vertical es más indicada e idónea para estos casos que una turbina de eje horizontal. Capacidad de generación eléctrica de la instalación que proponemos. Problemas asociados con la actual legislación. Problemas relacionados con la instalación eléctrica: el inversor de corriente, la decisión de utilizar un sistema de baterías, conectar el aerogenerador a la red o buscar un sistema mixto. La viabilidad económica de la instalación. ABSTRACT This project tries to complete a study on the viability of a vertical axis turbines installation in the roof of a “standard” 6 floors building in the center of Madrid. Besides, the project is based on the building situated in Lagasca 106, it pretends to be done in a “global” mode, in order to be an example of future projects, and include as many usual problems and items that this kind of projects could have to afford. These problems and issues are: the substantiation of the choice of the vertical axis turbine instead of a usual horizontal axis turbine, the model and the power capacity of this turbine. The turbines installation energy saving capacity. Problems associated to the legislation that we may to afford. And problems related to the electric installation, such us, transformer associated to the turbine, the decision of link the turbine with batteries or joining it directly to the building electric system. Also we have to set a programming system in order to monitor the different situations that the turbine has to work
Resumo:
On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 5 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of one of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in reinforced concrete frame buildings with masonry infill walls ranging from 3 to 8 floors in height. Structural as well as non-structural masonry walls suffered important damage that led to redistributions of forces causing in some cases the failure of columns. The importance of the interaction between the structural frames and the infill panels is analyzed by means of non-linear Finite Element Models. The resulting load levels are compared with the member capacities and the changes of the mechanical properties during the seismic event are described and discussed. In the light of the results obtained the observed failure patterns are explained. Some comments are stated concerning the adequacy of the numerical models that are usually used during the design phase for the seismic analysis.