872 resultados para soybean acid oil
Resumo:
This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased (center dot)NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of (center dot)NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.
Resumo:
An alternative method for determination of total trans fatty acids expressed as elaidic acid by capillary zone electrophoresis (CZE) under indirect UV detection at 224 nm within an analysis time of 7.5 min was developed. The optimized running electrolyte includes 15.0 mmol L(-1) KH(2)PO(4)/Na(2)HPO(4) buffer (pH similar to 7.0), 4.0 mmol L(-1) SDBS, 8.0 mmol L(-1) Brij35, 45%v/v ACN, 8% methanol, and 1.5% v/v n-octanol. Baseline separation of the critical pair C18-9cis/C18:1-9t: with a resolution higher than 1.5 was achieved using C15:0 as the internal standard. The optimum capillary electrophoresis (CE) conditions for the background electrolyte were established with the aid of Raman spectroscopy and experiments of a 3(2) factorial design. After response factor (R(F)) calculations, the CE method was applied to total trans fatty acid (TTFA) analysis in a hydrogenated vegetable fat (HVF) sample, and compared with the American Oil Chemists` Society (AOCS) official method by gas chromatography (GC). The methods were compared with an independent sample t test, and no significant difference was found between CE and GC methods within the 95% confidence interval for six genuine replicates of TTFA analysis (p-value > 0.05). The CE method was applied to TTFA analysis in a spreadable cheese sample. Satisfactory results were obtained, indicating that the optimized methodology can be used for trans fatty acid determination for these samples.
Resumo:
The essential oil from seeds of Licaria puchury-major was isolated by hydrodistillation. The chemical composition of the oil was analyzed by GC and GUMS. Sixteen compounds were identified, representing 91.4% of the total oil. The major components were safrole (58.4%), dodecanoic acid (13.7%) and alpha-terpineol (8.4%). Oxygenated monoterpenoids were the main group of compounds.
Resumo:
The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.
Resumo:
Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route
Resumo:
Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho foi realizado para comparar os efeitos da adição de sementes inteiras de soja e algodão e de óleo de soja sobre os padrões ruminais e a digestibilidade in vitro, em bezerros Holandeses fistulados. Dois bezerros fistulados no rúmen foram alimentados com dieta basal com 2,5% de extrato etéreo (EE), o qual foi comparado com dietas com 5,0% de EE, em que as sementes de soja e algodão inteira ou o óleo de soja foram fontes de EE adicional. A adição de sementes de soja e de algodão resultou em decréscimo na digestibilidade in vitro da matéria seca e da fibra em detergente neutro (FDN), porém não houve alterações na digestibilidade in vitro da fibra em detergente ácido (FDA) em relação à dieta controle. A adição de semente algodão provocou decréscimo na digestibilidade in vitro da proteína bruta em comparação à dieta controle. A concentração de ácido propiônico nas dietas com adição de óleo de soja foi 16% mais elevada que a proporcionada pelas demais dietas. O uso de óleo de soja pareceu ser a mais adequada em relação à digestibilidade da matéria seca, FDA e FDN e à manutenção de pH, quando comparado a outros tipos de adição lipídica, porém menos eficiente que a semente de soja em relação à digestibilidade in vitro da proteína bruta. O número de protozoários apresentou grande variação entre dietas, mas nenhum efeito com adição de óleo foi observado. A maior concentração de N-NH3 ruminal foi obtida na dieta com óleo de soja, quando comparada às outras dietas.
Resumo:
This study aimed: 1) to classify ingredients according to the digestible amino acid (AA) profile; 2) to determine ingredients with AA profile closer to the ideal for broiler chickens; and 3) to compare digestible AA profiles from simulated diets with the ideal protein profile. The digestible AA levels of 30 ingredients were compiled from the literature and presented as percentages of lysine according to the ideal protein concept. Cluster and principal component analyses (exploratory analyses) were used to compose and describe groups of ingredients according to AA profiles. Four ingredient groups were identified by cluster analysis, and the classification of the ingredients within each of these groups was obtained from a principal component analysis, showing 11 classes of ingredients with similar digestible AA profiles. The ingredients with AA profiles closer to the ideal protein were meat and bone meal 45, fish meal 60 and wheat germ meal, all of them constituting Class 1; the ingredients from the other classes gradually diverged from the ideal protein. Soybean meal, which is the main protein source for poultry, showed good AA balance since it was included in Class 3. on the contrary, corn, which is the main energy source in poultry diets, was classified in Class 8. Dietary AA profiles were improved when corn and/or soybean meal were partially or totally replaced in the simulations by ingredients with better AA balance.
Resumo:
This study was designed to evaluate the effects of different fat sources on the performance, egg quality, and lipid profile of the egg yolks of layers in their second production cycle. The fat sources were cottonseed oil, soybean oil, lard, sunflower oil, or canola oil. Experimental diets were fed to postmolt ISA Brown layers at 70 wk of age and the experimental period was 74 to 86 wk of age. The different fat sources did not influence performance or eggshell quality, but lipid profile of the egg yolk changed as a function of dietary fat sources. In general, the best changes, such as lower level of saturated fatty acids, higher levels of alpha-linolenic acid and DHA, and lower linoleic acid levels, were promoted by the addition of canola oil, but it did not promote enrichment of the eggs with polyunsaturated fatty acids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A ferrugem asiática da soja, causada pelo fungo Phakopsora pachyrhizi, é considerada a principal doença da soja, e, portanto, a escolha e o uso adequado dos equipamentos de pulverização são essenciais para seu controle. O objetivo deste trabalho foi avaliar o desempenho de diferentes equipamentos de pulverização aérea para o controle curativo da ferrugem da soja, utilizando o fungicida Impact 125 SC (flutriafol) a 0,5 L p c ha-1. Os seguintes tratamentos foram avaliados: atomizador Micronair AU 5000 (10 L ha-1 com óleo e 20 L ha-1 sem óleo na calda); atomizador Stol ARD (10 e 20 L ha-1 ambos com óleo) e o sistema eletrostático Spectrum (10 L ha-1 sem óleo a 64 e 71% de umidade relativa). Utilizou-se óleo de algodão (1,0 L ha-1) acrescido de emulsificante BR 455 a 0,025 L ha-1. O ensaio foi realizado na terceira aplicação de fungicidas, quando foram analisadas quatro repetições nas áreas aplicadas e quatro testemunhas não aplicadas para cada tratamento, avaliando-se a severidade da ferrugem, os depósitos de flutriafol nas folhas de soja e o percentual de redução de ferrugem. A análise dos depósitos nas folhas mostrou que não houve diferenças significativas entre os tratamentos. Os melhores controles da ferrugem foram obtidos com os tratamentos Micronair (10 L ha-1 com óleo), Stol (20 L ha-1 com óleo) e o sistema elestrostático (10 L ha-1) com a menor umidade relativa do ar (64 %).
Resumo:
Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution
Resumo:
Background: This study was an investigation of the effects of ingesting a daily dose of isolated glycinin soy protein (11S globulin), in association with rosuvastatin, on the control of hypercholesterolemia in experimental animals.Methods: Male Wistar rats were kept in individual cages under appropriate controlled conditions of temperature, light and humidity. The animals were divided into five groups (n = 9): 1) standard (STD): fed on casein as protein source; 2) hypercholesterolemic (HC): STD plus 1% cholesterol and 0.5% cholic acid; 3) HC+11S: hypercholesterolemic + glycinin (300 mg/kg/day); 4) HC+ROS: hypercholesterolemic + rosuvastatin (10 mg/kg/day); 5) HC+11S+ROS: HC diet, the 11S protein and the drug in the doses given in (3) and (4). The protein and the drug were administered by gavage for 28 days. The results indicated that the addition of 1% cholesterol and 0.5% cholic acid induced hypercholesterolemia in the animals without interfering with their weight gain.Results: A single daily dose of glycinin contributed an additional 2.8% of dietary protein intake and demonstrated its functional role, particularly in raising HDL-C, decreasing triglycerides in the liver and improving the atherogenic index in animals exposed to a hypercholesterolemic diet.Conclusion: Most of the beneficial effects of the isolated treatments disappeared when the drug (rosuvastatin) and the protein (glycinin) were taken simultaneously. The association was shown not to interact additively, as noted in the plasma levels of total cholesterol and non-HDL cholesterol, and in the significant increase of cholesterol in the liver. Studies are in progress to identify the effects of peptides derived from the 11S globulin and their role in cholesterol metabolism.
Resumo:
Diferenças inter e intra-específicas na habilidade de suportar períodos de estresse nutricional podem dever-se à capacidade de armazenar e liberar íons dos vacúolos, e, ou, à intensidade de retranslocação de nutrientes em tais condições. Neste trabalho, pretendeu-se avaliar diferenças varietais quanto ao tamanho do pool não-metabólico de Pi; velocidade de liberação do Pi previamente armazenado (VLPi), quando o P citoplasmático cai a um valor limite; capacidade de transportar Pi de regiões menos ativas para aquelas mais ativas metabolicamente e definir compartimentos que são preferencialmente fontes e os que são preferencialmente drenos para o Pi, em condições de absorção limitada de P. Avaliaram-se a produção de matéria seca e os teores internos de Pi, orgânico (Po) e total solúvel em ácido (Pts), de diferentes órgãos de plantas dos cultivares de soja (Glycine max L. Merrill) Santa Rosa, Uberaba, IAC8, Doko e UFV1, submetidos a oito dias de omissão do elemento. A VLPi foi estimada como tangente às equações obtidas para Pi como função do perído de omissão no ponto médio do período de omissão em que houve maior decréscimo em Pi (zero a quatro dias de omissão de P), t = dois dias, considerando-se que -deltaPi/deltat expressa a velocidade de liberação de Pi. A capacidade interna de tamponamento de Pi (CTIPi) foi calculada como o inverso da VLPi. O cultivar Santa Rosa apresentou maior capacidade de armazenar Pi, quando o suprimento externo foi alto, liberando-o mais intensamente sob condições de baixo suprimento de P que os cultivares IAC8 e UFV1. O cultivar Uberaba mostrou-se superior ao Doko em sua habilidade de armazenar e utilizar o Pi. Folhas superiores mostraram ser o principal dreno para o Pi armazenado em folhas medianas e inferiores, seguidas por raízes e caules. Raízes comportaram-se como fontes ou drenos para o Pi. Raízes e folhas superiores apresentaram maiores (VLPi) e menores valores de CTIPi que folhas medianas e folhas inferiores, sendo o caule o compartimento com menor VLPi e maior CTIPi. Dentre as variedades, as diferenças foram pequenas, destacando-se a maior VLPi e menor CTIPi do cultivar Santa Rosa. O cultivar Doko apresentou a menor VLPi e maior CTIPi, enquanto Uberaba, IAC8 e UFV1 ocuparam posição intermediária quanto a essas características.