980 resultados para pyrazine derivative
Resumo:
We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
The carotenoid composition was evaluated during ripening of papaya cv. `Golden` under untreated (control) conditions and treated with ethylene and 1-methylcyclopropene (1-MCP). At the end of the experiments, the total carotenoid content in the control group (2194.4 mu g/100 g) was twice as high as that found in ethylene (1018.1 mu g/100 g) and 1-MCP (654.5 mu g/100 g) gas-treated samples. Separation of 21 carotenoids by HPLC connected to photodiode array and mass spectrometry detectors showed that no minor carotenoids seemed to be particularly favoured by the treatments. Lycopene was the major carotenoid in all untreated and gas-treated samples, ranging from 461.5 to 1321.6 mu g/100 g at the end of the experiments. According to the proposed biosynthetic pathway, lycopene is the central compound, since it is the most abundant carotenoid indicating a high stimulation of its upstream steps during ripening, and it is the source for the synthesis of other derivative compounds, such as beta-cryptoxanthin. The influence of both gas treatments on the carotenoid biosynthetic pathway was considered. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Seed coats, cotyledons and hypocotyls from six Peruvian (Lupinus mutabilis Sweet) and two Brazilian (Lupinus albus and Lupinus angustifolius) lupin cultivars were assessed regarding their content of isoflavones and antioxidant capacity. Genistein and a genistein derivative were detected in seed coats and cotyledons from Peruvian cultivars. Total isoflavones ranged from 9.8 to 87, 16.1 to 30.8 and 1.3 to 6.1 mg/100 g of sample in fresh weight (expressed as genistein) in seed coat, cotyledon and hypocotyl fractions, respectively, from mutabilis species, whereas no isoflavones were detected in L. angustifolius and L. albus. A significant correlation (r = 0.99) was found between the total isoflavone levels and the antioxidant capacity measured by the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging method in all fractions of Peruvian samples. No condensed tannins were detected in any of the lupin cultivars. The H-6 Andean cultivar is promising for its high isoflavone content and antioxidant capacity. Insights from this study indicate that lupin cultivars of the mutabilis species have similar isoflavone profiles and that isoflavones are more concentrated in the cotyledon seed fraction than in the seed coat or hypocotyl fractions. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A cholesterol-rich nanoemulsion (LDE) that resembles LDL binds to the LDL receptors and after injection into the blood stream may concentrate in cells with LDL receptor overexpression, as occurs in neoplasias and other proliferative processes. Thus, LDE can be used as vehicle to target drugs against those cells. The current study was designed to verify in rabbits whether LDE concentrates in the lesioned rabbit artery and whether a paclitaxel derivative, paclitaxel oleate, associated to LDE could reduce the atherosclerotic lesions. Sixteen male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 under cholesterol feeding, eight animals were treated with four weekly intravenous injections of LDE-paclitaxel (4 mg/kg) and eight with four weekly intravenous saline solution injections for additional 30 days. On day 60, the animals were sacrificed for analysis. The uptake of LDE labeled with [C-14]-cholesteryl oleate by the aortic arch of cholesterol-fed rabbits was twice as much that observed in animals fed only regular chow. LDE-paclitaxel reduced the lesion areas of cholesterol-fed animals by 60% and intima-media ratio fourfold and inhibited the macrophage migration and the smooth muscle cell proliferation and invasion of the intima. LDE-paclitaxel treatment had no toxicity. In conclusion, LDE-paclitaxel produced pronounced atherosclerosis regression without toxicity and has shown remarkable potential in cardiovascular therapeutics. (c) 2008 Published by Elsevier Ireland Ltd.
Resumo:
Nitrofurazone (NF) and its derivative, hydroxymethylnitrofurazone (NFOH), have presented antichagasic activity. NFOH has higher activity and lower mutagenicity. The aim of this work was to assess whether NF and its derivative NFOH would also be inhibitors of cruzain, besides their trypanothione reductase inhibitory activity. In vitro cruzain inhibition tests were performed for both compounds, and the 50% inhibitory concentration (IC(50)) for NF and NFOH presented values of 22.83 +/- 1.2 mu M and 10.55 +/- 0.81 mu M, respectively. AM1 semi-empirical molecular modeling studies were performed to understand the activity of the compounds, corroborating the observed cruzain inhibitory activity.
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A wide range of polyfunctional aryl and heteroaryl zinc reagents were efficiently prepared in THF by using (TMP)(2)Mg center dot 2LiCl (TMP = 2,2,6,6-tetramethylpiperamidyl) in the presence of ZnCl(2). The possible pathways of this metalation procedure as well as possible reactive intermediates are discussed. This experimental protocol expands the tolerance of functional groups and allows an efficient zincation of sensitive heterocycles such as quinoxaline or pyrazine. The zincated arenes and heteroarenes react with various electrophiles providing the expected products in 60-95 % yield.
Resumo:
We report on a convergent approach for the generation of dendrimers containing the [Ru3O(aC)(6)] electroactive core, of great interest as multielectron transfer catalysts. The proposed strategy is based on the generation of the trimeric complex [(Ru3O(ac)(6)(4-pic)(2)(pz))2-mu(2)-Ru3O(ac)(6)(CH3OH)](3+) (ac = acetate, 4-pic = 4-methylpyridine, pz = pyrazine). In this complex, the labile CH3OH ligand can be displaced by the bridging pyrazine ligand of [Ru3O(ac)(6)(pz)3](0), leading to the self-assembly of the [{[Ru3O(ac)(6)(4-pic)(2)(pz)](2)-mu(2)-Ru3O(ac)(6)(pz)}(3)- mu(3)-Ru3O(ac)(6)](n+) dendrimer containing 30 ruthenium atoms. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Investigation of the bioactive crude extracts from two populations of the red alga Laurencia dendroidea from the southeastern Brazilian coast led to the identification of five sesquiterpenes: (+)-obtusane (1), a triquinane derivative (2), (-)-elatol (3), obtusol (4), and cartilagineol (5). An antileishmanial bioassay against Leishmania amazonensis was conducted for crude lipophilic extracts and for sesquiterpenes 2, 3, and 4. Compounds 3 and 4 displayed in vitro and in vivo leishmanicidal activity and very low cytotoxicity.