967 resultados para proline accumulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of novel molecules for the creation of nanometer structures with specific properties has been the current interest of this research. We have developed a set of molecules from hydrophobic omega- and alpha-amino acids by protecting the -NH(2) with Boc (t-butyloxycarbonyl) group and -CO(2)H with para-nitroanilide such as BocHN-Xx-CONH-(p-NO(2))center dot C(6)H(4), where Xx is gamma-aminobutyric acid (gamma-Abu), (L)-isoleucine, alpha-aminoisobutyric acid, proline, etc. These molecules generate various nanometer structures, such as nanofibrils, nanotubes and nanovesicles, in methanol/water through the self-assembly of bilayers in which the nitro benzene moieties are stacked in the middle and the Boc-protected amino acids parts are packed in the outer surface. The bilayers can be further stacked one over the other through hydrophobic interactions to form multilayer structure, which helps to generate different kinds of nanoscopic structures. The formation of the nanostructures has been facilitated through the participation of various noncovalent interactions, such as hydrophobic interactions, hydrogen bonding and aromatic p-stacking interactions. Fluorescence microscopy and UV studies reveal that the nanovesicles generated from pro-based molecule can encapsulate dye molecules which can be released by addition of acid (at pH 2). These single amino acid based molecules are both easy to synthesize and cost-effective and therefore offer novel scaffolds for the future design of nanoscale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper develops a more precise specification and understanding of the process of national-level knowledge accumulation and absorptive capabilities by applying the reasoning and evidence from the firm-level analysis pioneered by Cohen and Levinthal (1989, 1990). In doing so, we acknowledge that significant cross-border effects due to the role of both inward and outward FDI exist and that assimilation of foreign knowledge is not only confined to catching-up economies but is also carried out by countries at the frontier-sharing phase. We postulate a non-linear relationship between national absorptive capacity and the technological gap, due to the effects of the cumulative nature of the learning process and the increase in complexity of external knowledge as the country approaches the technological frontier. We argue that national absorptive capacity and the accumulation of knowledge stock are simultaneously determined. This implies that different phases of technological development require different strategies. During the catching-up phase, knowledge accumulation occurs predominately through the absorption of trade and/or inward FDI-related R&D spillovers. At the pre-frontier-sharing phase onwards, increases in the knowledge base occur largely through independent knowledge creation and actively accessing foreign-located technological spillovers, inter alia through outward FDI-related R&D, joint ventures and strategic alliances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ingestion of caesium (Cs) radioisotopes poses a health risk to humans. Crop varieties that accumulate less Cs in their edible tissues may provide a useful countermeasure. This study was performed to determine whether quantitative genetics on a model plant (Arabidopsis thaliana) might inform such 'safe'-crop strategies. Arabidopsis accessions and recombinant inbred lines (RILs), from Landsberg erecta (Ler) x Cape Verdi Island (Cvi), Ler x Columbia (Col), and Niederzenz (Nd) x Col mapping populations, were grown on agar supplemented with subtoxic levels of Cs. Shoot Cs concentration varied up to three-fold, and shoot f. wt varied up to 25-fold within populations. The heritability of growth and Cs accumulation traits ranged from 0.06 to 0.28. Four quantitative trait loci (QTL) accounted for > 80 of the genetic contribution to the total phenotypic variation in shoot Cs concentration in the Ler x Col population. QTL identified in this study, in particular, QTL co-localizing to the top and bottom regions of Chromosomes I and V in two different mapping populations, are amenable to positional cloning and, through collinearity, may inform selection or breeding strategies for the development of 'safe' crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The objective of this study was to evaluate the accuracy and reproducibility of three complete denture biofilm indices (Prosthesis Hygiene Index; Jeganathan et al. Index; Budtz-J circle divide rgensen Index) by means of a computerised comparison method. Background: Clinical studies into denture hygiene have employed a large number of biofilm indices among their outcome variables. However, the knowledge about the validity of these indices is still scarce. Materials and methods: Sixty-two complete denture wearers were selected. The internal surfaces of the upper complete dentures were stained (5% erythrosine) and photographed. The slides were projected on paper, and the biofilm indices were applied over the photos by means of a scoring method. For the computerised method, the areas (total and biofilm-covered) were measured by dedicated software (Image Tool). In addition, to compare the results of the computerised method and Prosthetic Hygiene Index, a new scoring scale (including four and five graded) was introduced. For the Jeganathan et al. and Budtz-J circle divide rgensen indices, the original scales were used. Values for each index were compared with the computerised method by the Friedman test. Their reproducibility was measured by means of weighed kappa. Significance for both tests was set at 0.05. Results: The indices tested provided similar mean measures but they tended to overestimate biofilm coverage when compared with the computerised method (p < 0.001). Agreement between the Prosthesis Hygiene Index and the computerised method was not significant, regardless of the scale used. Jeghanathan et al. Index showed weak agreement, and consistent results were found for Budtz-Jorgensen Index (kappa = 0.19 and 0.39 respectively). Conclusion: Assessment of accuracy for the biofilm indices showed instrument bias that was similar among the tested methods. Weak inter-instrument reproducibility was found for the indices, except for the Budtz-J circle divide rgensen Index. This should be the method of choice for clinical studies when more sophisticated approaches are not possible.