995 resultados para pH inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inhibition of the c-Jun N-terminal kinase (JNK) pathway by the TAT-coupled peptide XG-102 (formerly D-JNKI1) induces strong neuroprotection in ischemic stroke in rodents. We investigated the effect of JNK inhibition in intracerebral hemorrhage (ICH). Methods: Three hours after induction of ICH by intrastriatal collagenase injection in mice, the animals received an intravenous injection of 100 mu g/kg of XG-102. The neurological outcome was assessed daily and the mice were sacrificed at 6 h, 1, 2 or 5 days after ICH. Results: XG-102 administration significantly improved the neurological outcome at 1 day (p < 0.01). The lesion volume was significantly decreased after 2 days (29 +/- 11 vs. 39 +/- 5 mm(3) in vehicle-treated animals, p < 0.05). There was also a decreased hemispheric swelling (14 +/- 13 vs. 26 +/- 9% in vehicle-treated animals, p < 0.05) correlating with increased aquaporin 4 expression. Conclusions: XG-102 attenuates cerebral edema in ICH and functional impairment at early time points. The beneficial effects observed with XG-102 in ICH, as well as in ischemic stroke, open the possibility to rapidly treat stroke patients before imaging, thereby saving precious time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During synaptic activity, the clearance of neuronally released glutamate leads to an intracellular sodium concentration increase in astrocytes that is associated with significant metabolic cost. The proximity of mitochondria at glutamate uptake sites in astrocytes raises the question of the ability of mitochondria to respond to these energy demands. We used dynamic fluorescence imaging to investigate the impact of glutamatergic transmission on mitochondria in intact astrocytes. Neuronal release of glutamate induced an intracellular acidification in astrocytes, via glutamate transporters, that spread over the mitochondrial matrix. The glutamate-induced mitochondrial matrix acidification exceeded cytosolic acidification and abrogated cytosol-to-mitochondrial matrix pH gradient. By decoupling glutamate uptake from cellular acidification, we found that glutamate induced a pH-mediated decrease in mitochondrial metabolism that surpasses the Ca(2+)-mediated stimulatory effects. These findings suggest a model in which excitatory neurotransmission dynamically regulates astrocyte energy metabolism by limiting the contribution of mitochondria to the metabolic response, thereby increasing the local oxygen availability and preventing excessive mitochondrial reactive oxygen species production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Rotenone is a botanical pesticide derived from extracts of Derris roots, which is traditionally used as piscicide, but also as an industrial insecticide for home gardens. Its mechanism of action is potent inhibition of mitochondrial respiratory chain by uncoupling oxidative phosphorylation by blocking electron transport at complex-I. Despite its classification as mild to moderately toxic to humans (estimated LD50, 300-500 mg/kg), there is a striking variety of acute toxicity of rotenone depending on the formulation (solvents). Human fatalities with rotenone-containing insecticides have been rarely reported, and a rapid deterioration within a few hours of the ingestion has been described previously in one case. Case report: A 49-year-old Tamil man with a history of asthma, ingested 250 mL of an insecticide containing 1.24% of rotenone (3.125 g, 52.1-62.5 mg/kg) in a suicide attempt at home. The product was not labeled as toxic. One hour later, he vomited repeatedly and emergency services were alerted. He was found unconscious with irregular respiration and was intubated. On arrival at the emergency department, he was comatose (GCS 3) with fixed and dilated pupils, and absent corneal reflexes. Physical examination revealed hemodynamic instability with hypotension (55/30 mmHg) and bradycardia (52 bpm). Significant laboratory findings were lactic acidosis (pH 6.97, lactate 17 mmol/L) and hypokalemia (2 mmol/L). Cranial computed tomography (CT) showed early cerebral edema. A single dose of activated charcoal was given. Intravenous hydration, ephedrine, repeated boli of dobutamine, and a perfusor with 90 micrograms/h norepinephine stabilized blood pressure temporarily. Atropine had a minimal effect on heart rate (58 bpm). Intravenous lipid emulsion was considered (log Pow 4.1), but there was a rapid deterioration with refractory hypotension and acute circulatory failure. The patient died 5h after ingestion of the insecticide. No autopsy was performed. Quantitative analysis of serum performed by high-resolution/accurate mass-mass spectrometry and liquid chromatography (LC-HR/AM-MS): 560 ng/mL rotenone. Other substances were excluded by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS/MS). Conclusion: The clinical course was characterized by early severe symptoms and a rapidly fatal evolution, compatible with inhibition of mitochondrial energy supply. Although rotenone is classified as mild to moderately toxic, physicians must be aware that suicidal ingestion of emulsified concentrates may be rapidly fatal. (n=3): stridor, cyanosis, cough (one each). Local swelling after chewing or swallowing soap developed at the earliest after 20 minutes and persisted beyond 24 hours in some cases. Treatment with antihistamines and/or steroids relieved the symptoms in 9 cases. Conclusion: Bar soap ingestion by seniors carries a risk of severe local reactions. Half the patients developed symptoms, predominantly swellings of tongue and/or lips (38%). Cognitive impairment, particularly in the cases of dementia (37%), may increase the risk of unintentional ingestion. Chewing and intraoral retention of soap leads to prolonged contact with the mucosal membranes. Age-associated physiological changes of oral mucosa probably promote the irritant effects of the surfactants. Medical treatment with antihistamines and corticosteroids usually leads to rapid decline of symptoms. Without treatment, there may be a risk of airway obstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptomyces alboniger ATCC 12461 grown in brain heart infusion (BHI) medium produced two extracellular serine-proteinases, denoted SP I and SP II, which were purified by ammonium sulfate precipitation and aprotinin-agarose affinity chromatography. SP I was purified 88,9-fold and SP II 66,7- fold, with 33.4% and 10.4% yield, respectively. The optimum pH for the proteinases activity, using a-N-p-tosyl-L-arginine-methyl ester (TAME) as substrate, was 9-10 and the optimum temperature was 37ºC. The proteolytic activity of SP I and SP II was inhibited by aprotinin and SP I was partially inhibited by leupeptin, both serine-proteinase inhibitors. S. alboniger growth in BHI-liquid medium decreased when 5 mg/ml, 10 mg/ml of aprotinin was used, being completely inhibited with 20 mg/ml and 40 mg/ml. At the ultrastructural level, aprotinin-treated S. alboniger cells showed swelling of the bacterial body and condensation of the genetic material, probably related to the inhibition of its growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) inhibitors are widely used today for the management of hypertension and congestive heart failure. These agents inhibit angiotensin II synthesis. In some particular circumstances they may be responsible for deterioration of renal function, e.g. in hypertensive patients with bilateral renal artery stenosis or with stenosis of the artery supplying a single kidney, or in patients with severe congestive heart failure or marked nephroangiosclerosis. In these patients renal perfusion pressure may become too low to maintain adequate glomerular filtration as there remains no angiotensin II to increase the tone of the efferent arteriole. In high risk patients it is therefore recommended that serum creatinine be checked after initiating therapy with an ACE inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractAcidosis is encountered during tissue inflammation and triggers pain in humans. H+-gated ion channels are expressed at high levels in sensory neurons of the peripheral nervous system. Ion channels from two different families present the required pH sensitivity to detect the acidosis associated with peripheral inflammation: Acid-Sensing Ion Channels (ASICs) and the Transient Receptor Potential Vanilloid-1 (TRPV1) channel.ASICs are members of the Degenerin/Epithelial Na+ Channel family of ion channels. Six ASIC subunits have been identified in mammals (ASICla, -lb, -2a, -2b, -3 and -4). ASICs form In-activated voltage-insensitive homo- or heterotrimeric Na+ channels. TRPV1 is a member of the TRP family of ion channels and forms non-selective cation channels that mediate a sustained current. TRPV1 is activated by H+, heat (T>43°C), lipids, capsaicin, voltage and other stimuli. A stimulus can increase TRPV1 response to a different stimulus. For example H+ can shift the capsaicin concentration dependence of TRPV1 to lower values. ASICs and TRPV1 have been shown to be involved in inflammatory pain. Using the patch-clamp technique, we studied different aspects of the function of ASICs and TRPV1 in the physiological context of pain.In the first part of this thesis, we characterize the effect of a temperature increase from 25 to 35°C on the function of ASICs and TRPV1 in transfected CHO cells and primary cultures of rat DRG sensory neurons. ASICs give rise to transient currents while TRPV1 mediates a sustained current. In addition, ASICs and TRPV1 respond to H+ with distinct pH dependences. We assess the relative contribution of ASICs and TRPV1 to H+-evoked electrical signaling in rat DRG neurons and we conclude that ASICs are the most important pH sensors in the pH range 7.4 to 6.0 at 35°C in sensory neurons.ASICs and TRPV1 are expressed in the epithelium lining the lumen of the bladder (urothelium). The Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) is a painful condition associated with a dysfunction of the urothelial barrier and with inflammation. In the second part of this thesis, we show that human urothelial cells -the cell line TEU2 and primary cultures of human bladder urothelium- express functional ASICs but no functional TRPV1 channels. In addition, we show that the levels of ASIC2 and ASIC3 mRNA are increased in the urothelium of patients suffering from BPS/IC. These data suggest that ASICs are involved in the pathology of BPS/IC.Finally, we demonstrate that APETx2 inhibits the sensory neuron specific voltage-dependent Na+ channel Nav1.8. APETx2 was previously shown to inhibit homo- or heterotrimeric ASIC3- containing channels with IC5o from 0.08 to 1 μΜ. We show that APETx2 also inhibits Nav1.8 with an ICsoof «2.6 μΜ. APETx2 reduces the maximal conductance and induces a depolarizing shift in the voltage dependence of activation of Nav1.8. In current-clamp experiments, APETx2 reduces the number of action potentials (APs) evoked by a current ramp. Nav1.8 mediates most of the current during the AP upstroke and has been shown to be an important mediator of inflammatory pain. The fact that APETx2 inhibits two ion channels involved in inflammatory pain suggests that APETx2 or derivatives may represent novel analgesic compounds.RésuméL'acidose tissulaire est observée durant l'inflammation et entraine la douleur chez l'humain. Des canaux ioniques activés par les protons (H+) sont fortement exprimés dans les neurones sensoriels du système nerveux périphérique. De ceux-ci, les Acid-Sensing Ion Channels [ASICs) et Transient Receptor Potential Vanilloid-1 (TRPV1) présentent une sensibilité adéquate à l'acidité pour servir de détecteurs d'acidose.Les ASICs sont membres de la famille Degenerin/Epithelial Na* Channel. Six sous-unités ASIC ont été identifiées chez les mammifères (ASICla, -lb, -2a, -2b, -3 et -4). Les ASICs forment des canaux sélectifs au Na\ insensibles au voltage et activés par les H+. Les canaux fonctionnels sont des homo- ou hétérotrimères de sous-unités ASIC. TRPV1 est un membre de la famille TRP de canaux ioniques. Les canaux TRPV1 sont activés par les H+, la chaleur (T>43°Ç), les lipides, la capsaicine, le voltage et d'autres stimulus. L'activation de TRPV1 entraine un courant soutenu non-sélectif. Un stimulus peut augmenter la réponse de TRPV1 à un autre stimulus. Les H+ peuvent, par exemple, induire un décalage vers des valeurs plus faibles de la courbe de dépendance à la concentration de TRPV1 pour la capsaicine. Il a été démontré que les ASICs et TRPV1 sont impliqués dans la douleur inflammatoire. En utilisant la technique du patch-clamp, nous avons étudié différents aspects de la fonction des ASICs et de TRPV1 dans des contextes associés à la douleur.Dans la première partie de cette thèse, nous caractérisons l'effet d'une augmentation de température de 25 à 35°C sur la fonction des canaux ASICs et TRPV1, dans des cellules CHO transfectées et dans des cultures primaires de neurones sensoriels (DRG) de rat. L'activation des ASICs entraine l'apparition d'un courant transitoire tandis que l'activation de TRPV1 entraine un courant soutenu. De plus, les ASICs et TRPV1 possèdent des dépendances au pH différentes. Nous évaluons la contribution relative des ASICs et de TRPV1 au signalement électrique induit par les H+ et nous concluons que les ASICs sont les senseurs d'acidité les plus importants dans les neurones sensoriels, dans le domaine de pH de 7.4 à 6.0, à température corporelle.Les ASICs et TRPV1 sont exprimés dans l'épithélium recouvrant l'intérieur de la vessie (l'urothélium). Le Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) est une condition médicale douloureuse associée à une dysfonction de la barrière urothéliale et à une inflammation. Dans la seconde partie de cette thèse, nous démontrons que des cellules urothéliales (de la lignée cellulaire TEU2) et des cellules provenant de cultures primaires d'épithéliums de vessies humaines expriment des canaux ASIC fonctionnels mais pas de TRPV1 fonctionnels. De plus, nous montrons que le niveau d'expression de ASIC2 et -3 est augmenté dans l'urothélium de la vessie de patients souffrant de BPS/IC. Ces données suggèrent que les ASICs sont impliqués dans la pathologie BPS/IC.Pour finir, nous démontrons que la toxine APETx2 inhibe le canal spécifique aux neurones sensoriels Nav1.8, un membre de la famille des canaux sodiques dépendants du potentiel. Il a été démontré précédemment que la toxine APETx2 inhibe les canaux contenant une ou plusieurs sous-unités ASIC3 avec un ICso entre 0.08 et 1 μΜ. Nous montrons que la toxine APETx2 inhibe Nav1.8 avec un IC50 de «2.6 μΜ. La toxine APETx2 réduit la conductance maximale et induit un décalage de la dépendance au potentiel de Nav1.8 vers des valeurs plus positives. Dans des expériences de courant imposé sur des neurones sensoriels, la toxine APETx2 réduit le nombre de potentiels d'action induits par une rampe de courant. Nav1.8 est responsable de la majeure partie du courant durant la phase ascendante du potentiel d'action et a été démontré comme étant un médiateur important de la douleur inflammatoire. L'inhibition de deux types de canaux, impliqués dans la douleurs inflammatoire, par la toxine APETx2, suggère que cette dernière ou ses dérivés représentent des composés analgésiques prometteurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the objective to evaluate PCR-mediated detection of Mycobacterium tuberculosis DNA as a diagnostic procedure for diagnosis of tuberculosis in individuals attending ambulatory services in Primary Health Units of the City Tuberculosis Program in Rio de Janeiro, Brazil, their sputum samples were collected and treated with a DNA extraction procedure using silica-guanidiniumthiocyanate. This procedure has been described to be highly efficient for extraction of different kind of nucleic acids from bacteria and clinical samples. Upon comparing PCR results with the number of acid-fast bacilli, no direct relation was observed between the number of bacilli present in the sample and PCR positivity. Part of the processed samples was therefore spiked with pure DNA of M. tuberculosis and inhibition of the PCR reaction was verified in 22 out of 36 (61%) of the samples, demonstrating that the extraction procedure as originally described should not be used for PCR analysis of sputum samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples from 20 lots of diphtheria-tetanus (adult use dT) vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP) vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI) test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN) test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method allowing a clear separation of the different variants of desialylated alpha 1-acid glycoprotein (orosomucoid) has been developed using isoelectric focusing in immobilized pH gradients, supplemented with 8 M urea and 2% v/v 2-mercaptoethanol. Immunoblotting with two antibody-steps afforded high sensitivity and permitted the detection of about 700 pg of alpha 1-acid glycoprotein in a 20 microL plasma sample diluted 1:28 672. A one year old bloodstrain, kept at room temperature, could easily be phenotyped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is part of a continuing goal to improve the multimetal deposition technique (MMD), as well as the single-metal deposition (SMD), to make them more robust, more user-friendly, and less labour-intensive. Indeed, two major limitations of the MMD/SMD were identified: (1) the synthesis of colloidal gold, which is quite labour-intensive, and (2) the sharp decrease in efficiency observed when the pH of the working solution is increased above pH 3. About the synthesis protocol, it has been simplified so that there is no more need to monitor the temperature during the synthesis. The efficiency has also been improved by adding aspartic acid, conjointly with sodium citrate, during the synthesis of colloidal gold. This extends the range of pH for which it is possible to detect fingermarks in the frame of the MMD/SMD. The operational range is now extended from 2 to 6.7, compared to 2-3 for the previous formulations. The increased robustness of the working solution may improve the ability of the technique to process substrates that tend to increase the pH of the solution after their immersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Captopril, an inhibitor of angiotensin converting enzyme, was administered twice daily to 13 hypertensive patients for a mean period of 9 weeks. Continuous blood pressure control in the ambulatory patients was established with a portable blood pressure recorder. Notwithstanding, in eight patients with normal renal function, plasma converting enzyme was found to resume normal activity before administration of the morning dose of captopril. Only in 5 patients with impaired renal function did some blockade of plasma converting enzyme persist for more than 12 hours. Measured plasma converting enzyme activity seemed to reflect total conversion of angiotensin I, including conversion in the pulmonary vascular bed, since changes in its activity were closely paralled by changes in plasma aldosterone levels. Bradykinin accumulation seems unlikely when converting enzyme and thus, presumably, kininase II has resumed normal activity. Captopril administration does not seem to alter plasma epinephrine or norepinephrine levels. Blood pressure reduction in the face of normal angiotensin converting enzyme activity is probably due to hyporesponsiveness of the arterioles to pressor hormones, which may be due to specific renin-related and/or nonspecific effects of captopril.