921 resultados para non-major
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
My dissertation consists of three essays. The central theme of these essays is the psychological factors and biases that affect the portfolio allocation decision. The first essay entitled, “Are women more risk-averse than men?” examines the gender difference in risk aversion as revealed by actual investment choices. Using a sample that controls for biases in the level of education and finance knowledge, there is evidence that when individuals have the same level of education, irrespective of their knowledge of finance, women are no more risk-averse than their male counterparts. However, the gender-risk aversion relation is also a function of age, income, wealth, marital status, race/ethnicity and the number of children in the household. The second essay entitled, “Can diversification be learned ?” investigates if investors who have superior investment knowledge are more likely to actively seek diversification benefits and are less prone to allocation biases. Results of cross-sectional analyses suggest that knowledge of finance increases the likelihood that an investor will efficiently allocate his direct investments across the major asset classes; invest in foreign assets; and hold a diversified equity portfolio. However, there is no evidence that investors who are more financially sophisticated make superior allocation decisions in their retirement savings. The final essay entitled, “The demographics of non-participation ”, examines the factors that affect the decision not to hold stocks. The results of probit regression models indicate that when individuals are highly educated, the decision to not participate in the stock market is less related to demographic factors. In particular, when individuals have attained at least a college degree and have advanced knowledge of finance, they are significantly more likely to invest in equities either directly or indirectly through mutual funds or their retirement savings. There is also evidence that the decision not to hold stocks is motivated by short-term market expectations and the most recent investment experience. The findings of these essays should increase the body of research that seeks to reconcile what investors actually do (positive theory) with what traditional theories of finance predict that investors should do (normative theory).
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
My dissertation consists of three essays. The central theme of these essays is the psychological factors and biases that affect the portfolio allocation decision. The first essay entitled, “Are women more risk-averse than men?” examines the gender difference in risk aversion as revealed by actual investment choices. Using a sample that controls for biases in the level of education and finance knowledge, there is evidence that when individuals have the same level of education, irrespective of their knowledge of finance, women are no more risk-averse than their male counterparts. However, the gender-risk aversion relation is also a function of age, income, wealth, marital status, race/ethnicity and the number of children in the household. The second essay entitled, “Can diversification be learned?” investigates if investors who have superior investment knowledge are more likely to actively seek diversification benefits and are less prone to allocation biases. Results of cross-sectional analyses suggest that knowledge of finance increases the likelihood that an investor will efficiently allocate his direct investments across the major asset classes; invest in foreign assets; and hold a diversified equity portfolio. However, there is no evidence that investors who are more financially sophisticated make superior allocation decisions in their retirement savings. The final essay entitled, “The demographics of non-participation”, examines the factors that affect the decision not to hold stocks. The results of probit regression models indicate that when individuals are highly educated, the decision to not participate in the stock market is less related to demographic factors. In particular, when individuals have attained at least a college degree and have advanced knowledge of finance, they are significantly more likely to invest in equities either directly or indirectly through mutual funds or their retirement savings. There is also evidence that the decision not to hold stocks is motivated by short-term market expectations and the most recent investment experience. The findings of these essays should increase the body of research that seeks to reconcile what investors actually do (positive theory) with what traditional theories of finance predict that investors should do (normative theory).
Resumo:
One of the major problems in the analysis of beams with Moment of Inertia varying along their length, is to find the Fixed End Moments, Stiffness, and Carry-Over Factors. In order to determine Fixed End Moments, it is necessary to consider the non-prismatic member as integrated by a large number of small sections with constant Moment of Inertia, and to find the M/EI values for each individual section. This process takes a lot of time from Designers and Structural Engineers. The object of this thesis is to design a computer program to simplify this repetitive process, obtaining rapidly and effectively the Final Moments and Shears in continuous non-prismatic Beams. For this purpose the Column Analogy and the Moment Distribution Methods of Professor Hardy Cross have been utilized as the principles toward the methodical computer solutions. The program has been specifically designed to analyze continuous beams of a maximum of four spans of any length, integrated by symmetrical members with rectangular cross sections and with rectilinear variation of the Moment of Inertia. Any load or combination of uniform and concentrated loads must be considered. Finally sample problems will be solved with the new Computer Program and with traditional systems, to determine the accuracy and applicability of the Program.
Resumo:
A review of the literature reveals few research has attempted to demonstrate if a relationship exists between the type of teacher training a science teacher has received and the perceived attitudes of his/her students. Considering that a great deal of time and energy has been devoted by university colleges, school districts, and educators towards refining the teacher education process, it would be more efficient for all parties involved, if research were available that could discern if certain pathways in achieving that education, would promote the tendency towards certain teacher behaviors occurring in the classroom, while other pathways would lead towards different behaviors. Some of the teacher preparation factors examined in this study include the college major chosen by the science teacher, the highest degree earned, the number of years of teaching experience, the type of science course taught, and the grade level taught by the teacher. This study examined how the various factors mentioned, could influence the behaviors which are characteristic of the teacher, and how these behaviors could be reflective in the classroom environment experienced by the students. The instrument used in the study was the Classroom Environment Scale (CES), Real Form. The measured classroom environment was broken down into three separate dimensions, with three components within each dimension in the CES. Multiple Regression statistical analyses examined how components of the teachers' education influenced the perceived dimensions of the classroom environment from the students. The study occurred in Miami-Dade County Florida, with a predominantly urban high school student population. There were 40 secondary science teachers involved, each with an average of 30 students. The total number of students sampled in the study was 1200. The teachers who participated in the study taught the entire range of secondary science courses offered at this large school district. All teachers were selected by the researcher so that a balance would occur in the sample between teachers who were education major versus science major. Additionally, the researcher selected teachers so that a balance occurred in regards to the different levels of college degrees earned among those involved in the study. Several research questions sought to determine if there was significant difference between the type of the educational background obtained by secondary science teachers and the students' perception of the classroom environment. Other research questions sought to determine if there were significant differences in the students' perceptions of the classroom environment for secondary science teachers who taught biological content, or non-biological content sciences. An additional research question sought to evaluate if the grade level taught would affect the students' perception of the classroom environment. Analysis of the multiple regression were run for each of four scores from the CES, Real Form. For score 1, involvement of students, the results showed that teachers with the highest number of years of experience, with masters or masters plus degrees, who were education majors, and who taught twelfth grade students, had greater amounts of students being attentive and interested in class activities, participating in discussions, and doing additional work on their own, as compared with teachers who had lower experience, a bachelors degree, were science majors, and who taught a grade lower than twelfth. For score 2, task orientation, which emphasized completing the required activities and staying on-task, the results showed that teachers with the highest and intermediate experience, a science major, and with the highest college degree, showed higher scores as compared with the teachers indicating lower experiences, education major and a bachelors degree. For Score 3, competition, which indicated how difficult it was to achieve high grades in the class, the results showed that teachers who taught non-biology content subjects had the greatest effect on the regression. Teachers with a masters degree, low levels of experience, and who taught twelfth grade students were also factored into the regression equation. For Score 4, innovation, which indicated the extent in which the teachers used new and innovative techniques to encourage diverse and creative thinking included teachers with an education major as the first entry into the regression equation. Teachers with the least experience (0 to 3 years), and teachers who taught twelfth and eleventh grade students were also included into the regression equation.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
It is widely accepted that court proceedings concerning child protection are a particularly sensitive type of court proceedings that warrant a different approach to other types of proceedings. Consequently, the use of specialized family or children’s judges or courts is commonplace across Europe and in common law jurisdictions. By contrast, in Ireland, proceedings under the Child Care Act 1991 are heard in the general courts system by judges who mostly do not specialize in child or family law. In principle, the Act itself and the associated case law accept that the vulnerability of the parties and the sensitivity of the issues involved are such that they need to be singled out for a different approach to other court proceedings. However, it is questionable whether this aspiration has been realized in a system where child care proceedings are mostly heard in a general District Court, using the same judges and the same physical facilities used for proceedings such as minor crime and traffic offences. This article draws on the first major qualitative analysis of professional perspectives on child care proceedings in the Irish District Court. It examines evidence from judges, lawyers, social workers, and guardians ad litem and asks whether non-specialist courts are an appropriate venue for proceedings on an issue as complex and sensitive as child protection, or whether the establishment of specialist family courts with dedicated staff and facilities provides a better solution.
Resumo:
Contexte: La douleur chronique non cancéreuse (DCNC) génère des retombées économiques et sociétales importantes. L’identification des patients à risque élevé d’être de grands utilisateurs de soins de santé pourrait être d’une grande utilité; en améliorant leur prise en charge, il serait éventuellement possible de réduire leurs coûts de soins de santé. Objectif: Identifier les facteurs prédictifs bio-psycho-sociaux des grands utilisateurs de soins de santé chez les patients souffrant de DCNC et suivis en soins de première ligne. Méthodologie: Des patients souffrant d’une DCNC modérée à sévère depuis au moins six mois et bénéficiant une ordonnance valide d’un analgésique par un médecin de famille ont été recrutés dans des pharmacies communautaires du territoire du Réseau universitaire intégré de santé (RUIS), de l’Université de Montréal entre Mai 2009 et Janvier 2010. Ce dernier est composé des six régions suivantes : Mauricie et centre du Québec, Laval, Montréal, Laurentides, Lanaudière et Montérégie. Les caractéristiques bio-psycho-sociales des participants ont été documentées à l’aide d’un questionnaire écrit et d’une entrevue téléphonique au moment du recrutement. Les coûts directs de santé ont été estimés à partir des soins et des services de santé reçus au cours de l’année précédant et suivant le recrutement et identifiés à partir de la base de données de la Régie d’Assurance maladie du Québec, RAMQ (assureur publique de la province du Québec). Ces coûts incluaient ceux des hospitalisations reliées à la douleur, des visites à l’urgence, des soins ambulatoires et de la médication prescrite pour le traitement de la douleur et la gestion des effets secondaires des analgésiques. Les grands utilisateurs des soins de santé ont été définis comme étant ceux faisant partie du quartile le plus élevé de coûts directs annuels en soins de santé dans l’année suivant le recrutement. Des modèles de régression logistique multivariés et le critère d’information d’Akaike ont permis d’identifier les facteurs prédictifs des coûts directs élevés en soins de santé. Résultats: Le coût direct annuel médian en soins de santé chez les grands utilisateurs de soins de santé (63 patients) était de 7 627 CAD et de 1 554 CAD pour les utilisateurs réguliers (188 patients). Le modèle prédictif final du risque d’être un grand utilisateur de soins de santé incluait la douleur localisée au niveau des membres inférieurs (OR = 3,03; 95% CI: 1,20 - 7,65), la réduction de la capacité fonctionnelle liée à la douleur (OR = 1,24; 95% CI: 1,03 - 1,48) et les coûts directs en soins de santé dans l’année précédente (OR = 17,67; 95% CI: 7,90 - 39,48). Les variables «sexe», «comorbidité», «dépression» et «attitude envers la guérison médicale» étaient également retenues dans le modèle prédictif final. Conclusion: Les patients souffrant d’une DCNC au niveau des membres inférieurs et présentant une détérioration de la capacité fonctionnelle liée à la douleur comptent parmi ceux les plus susceptibles d’être de grands utilisateurs de soins et de services. Le coût direct en soins de santé dans l’année précédente était également un facteur prédictif important. Améliorer la prise en charge chez cette catégorie de patients pourrait influencer favorablement leur état de santé et par conséquent les coûts assumés par le système de santé.
Resumo:
Continental margin sediments of SE South America originate from various terrestrial sources, each conveying specific magnetic and element signatures. Here, we aim to identify the sources and transport characteristics of shelf and slope sediments deposited between East Brazil and Patagonia (20°-48°S) using enviromagnetic, major element, and grain-size data. A set of five source-indicative parameters (i.e., chi-fd%, ARM/IRM, S0.3T, SIRM/Fe and Fe/K) of 25 surface samples (16-1805 m water depth) was analyzed by fuzzy c-means clustering and non-linear mapping to depict and unmix sediment-province characteristics. This multivariate approach yields three regionally coherent sediment provinces with petrologically and climatically distinct source regions. The southernmost province is entirely restricted to the slope off the Argentinean Pampas and has been identified as relict Andean-sourced sands with coarse unaltered magnetite. The direct transport to the slope was enabled by Rio Colorado and Rio Negro meltwaters during glacial and deglacial phases of low sea level. The adjacent shelf province consists of coastal loessoidal sands (highest hematite and goethite proportions) delivered from the Argentinean Pampas by wave erosion and westerly winds. The northernmost province includes the Plata mudbelt and Rio Grande Cone. It contains tropically weathered clayey silts from the La Plata Drainage Basin with pronounced proportions of fine magnetite, which were distributed up to ~24° S by the Brazilian Coastal Current and admixed to coarser relict sediments of Pampean loessoidal origin. Grain-size analyses of all samples showed that sediment fractionation during transport and deposition had little impact on magnetic and element source characteristics. This study corroborates the high potential of the chosen approach to access sediment origin in regions with contrasting sediment sources, complex transport dynamics, and large grain-size variability.
Resumo:
BACKGROUND: Moderate-to-vigorous physical activity (MVPA) is an important determinant of children’s physical health, and is commonly measured using accelerometers. A major limitation of accelerometers is non-wear time, which is the time the participant did not wear their device. Given that non-wear time is traditionally discarded from the dataset prior to estimating MVPA, final estimates of MVPA may be biased. Therefore, alternate approaches should be explored. OBJECTIVES: The objectives of this thesis were to 1) develop and describe an imputation approach that uses the socio-demographic, time, health, and behavioural data from participants to replace non-wear time accelerometer data, 2) determine the extent to which imputation of non-wear time data influences estimates of MVPA, and 3) determine if imputation of non-wear time data influences the associations between MVPA, body mass index (BMI), and systolic blood pressure (SBP). METHODS: Seven days of accelerometer data were collected using Actical accelerometers from 332 children aged 10-13. Three methods for handling missing accelerometer data were compared: 1) the “non-imputed” method wherein non-wear time was deleted from the dataset, 2) imputation dataset I, wherein the imputation of MVPA during non-wear time was based upon socio-demographic factors of the participant (e.g., age), health information (e.g., BMI), and time characteristics of the non-wear period (e.g., season), and 3) imputation dataset II wherein the imputation of MVPA was based upon the same variables as imputation dataset I, plus organized sport information. Associations between MVPA and health outcomes in each method were assessed using linear regression. RESULTS: Non-wear time accounted for 7.5% of epochs during waking hours. The average minutes/day of MVPA was 56.8 (95% CI: 54.2, 59.5) in the non-imputed dataset, 58.4 (95% CI: 55.8, 61.0) in imputed dataset I, and 59.0 (95% CI: 56.3, 61.5) in imputed dataset II. Estimates between datasets were not significantly different. The strength of the relationship between MVPA with BMI and SBP were comparable between all three datasets. CONCLUSION: These findings suggest that studies that achieve high accelerometer compliance with unsystematic patterns of missing data can use the traditional approach of deleting non-wear time from the dataset to obtain MVPA measures without substantial bias.
Resumo:
Background: There is growing evidence that individual EEG differences may aid in classifying patients with major depressive disorder (MDD) and also help predict clinical response to antidepressant treatment. This study aims to compare the effectiveness of EEG frequency band power, alpha asymmetry and prefrontal theta cordance towards escitalopram response prediction and MDD diagnosis, in a multi-site initiative. Methods: Resting EEG (eyes open and closed) was recorded from 64 electrodes in 44 depressed patients and 20 healthy controls at baseline, 2 weeks post-treatment and 8 weeks post-treatment. Clinical response was measured as change from baseline MADRS of 50% or more. EEG measures were analyzed (1) at baseline (2) at 2 weeks post-treatment and (3) as an ‘‘early change” variable defined as change in EEG from baseline to 2 weeks post-treatment. Results: At baseline, responders exhibited greater absolute alpha power in the left hemisphere versus the right while non-responders showed the opposite. Responders further exhibited a cortical asymmetry of greater right relative to left activity in parietal areas. Groups also differed in baseline relative delta power with responders showing greater power in the right hemisphere versus the left while non-responders showed the opposite. At 2 weeks post-treatment, responders exhibited greater absolute beta power in the left hemisphere relative to right and the opposite was noted for non-responders. The opposite pattern was noted for absolute and relative delta power at 2 weeks post-treatment. Responders exhibited early reduction in relative alpha power and early increments in relative theta power. Non-responders showed a significant early increase in prefrontal theta cordance. Absolute delta power helped distinguish MDD patients from healthy controls. Conclusions: Hemispheric asymmetries in the alpha and delta bands at pre-treatment baseline and at 2 weeks post-treatment have moderate to moderately strong predictive utility towards antidepressant treatment response. These findings have significant potential for improving clinical practice in psychiatry by eventually guiding clinical choice of treatments. This would greatly benefit patients awaiting relief from depressive symptoms as treatment optimization would help overcome problems associated with delayed recovery. Our results also indicate that resting EEG activity may have clinical utility in predicting MDD diagnosis.