998 resultados para neighbourhood size
Resumo:
The Turkevich-Frens synthesis starting conditions are expanded, ranging the gold salt concentrations up to 2 mM and citrate/gold(III) molar ratios up to 18:1. For each concentration of the initial gold salt solution, the citrate/gold(III) molar ratios are systematically varied from 2:1 to 18:1 and both the size and size distribution of the resulting gold nanoparticles are compared. This study reveals a different nanoparticle size evolution for gold salt solutions ranging below 0.8 mM compared to the case of gold salt solutions above 0.8 mM. In the case of Au3+]<0.8 mM, both the size and size distribution vary substantially with the citrate/gold(III) ratio, both displaying plateaux that evolve inversely to Au3+] at larger ratios. Conversely, for Au3+]>= 0.8 mM, the size and size distribution of the synthesized gold nanoparticles continuously rise as the citrate/gold(III) ratio is increased. A starting gold salt concentration of 0.6 mM leads to the formation of the most monodisperse gold nanoparticles (polydispersity index<0.1) for a wide range of citrate/gold(III) molar ratios (from 4:1 to 18:1). Via a model for the formation of gold nanoparticles by the citrate method, the experimental trends in size could be qualitatively predicted:the simulations showed that the destabilizing effect of increased electrolyte concentration at high initial Au3+] is compensated by a slight increase in zeta potential of gold nanoparticles to produce concentrated dispersion of gold nanoparticles of small sizes.
Resumo:
Bubble size in a gas liquid ejector has been measured using the image technique and analysed for estimation of Sauter mean diameter. The individual bubble diameter is estimated by considering the two dimensional contour of the ellipse, for the actual three dimensional ellipsoid in the system by equating the volume of the ellipsoid to that of the sphere. It is observed that the bubbles are of oblate and prolate shaped ellipsoid in this air water system. The bubble diameter is calculated based on this concept and the Sauter mean diameter is estimated. The error between these considerations is reported. The bubble size at different locations from the nozzle of the ejector is presented along with their percentage error which is around 18%.
Resumo:
Refinement of the internal grain size leads to strengthening by retarding dislocation motion. There have also been recent reports that a reduction in external diameter enhances the strength of single crystal pillars. Here we show, in a hitherto unexplored domain, a synergistic increase in strength by a combined reduction in internal (0.5 mu m) and external (20-50 mu m) dimensions, with strengths at failure approaching the theoretical value. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
Reports on the alloys formed from immiscible atoms when they are contained in a nano-sized system have initiated several research activities in the recent years. Bridging of the miscibility gap at nanoscale is significant as it has the potential to produce novel alloy materials with useful technological applications. Although the literature contains noticeable number of reports on the formation of solid solution between bulk immiscible atoms, several issues related to phase stability and microstructure remain unaddressed. This article discusses some of these issues using examples from the work done by the author's research group on isolated nanoparticles of bulk immiscible binary systems such as Ag-Ni, Ag-Fe and Ag-Co.
Resumo:
This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.
Resumo:
The role of crystallite size and clustering in influencing the stability of the structures of a large tetragonality ferroelectric system 0.6BiFeO(3)-0.4PbTiO(3) was investigated. The system exhibits cubic phase for a crystallite size similar to 25 nm, three times larger than the critical size reported for one of its end member PbTiO3. With increased degree of clustering for the same average crystallite size, partial stabilization of the ferroelectric tetragonal phase takes place. The results suggest that clustering helps in reducing the depolarization energy without the need for increasing the crystallite size of free particles.
Resumo:
The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.
Resumo:
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
Resumo:
The study of the fracture behaviour of concrete structures using the fictitious crack model requires two fracture properties of the concrete mix, namely, the size-independent specific fracture energy G(F). and the corresponding tension softening relation sigma(w) between the residual stress carrying capacity sigma and the crack opening w in the fracture process zone ahead of a real crack. In this paper, bi-linear tension softening diagrams of three different concrete mixes, ranging in compressive strength from 57 to 122 MPa whose size-independent specific fracture energy has been previously determined, have been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
This article presents the details of estimation of fracture parameters for high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization of ingredients of HSC, HSC1 and UHSC have been provided. Experiments have been carried out on beams made up of HSC, HSC1 and UHSC considering various sizes and notch depths. Fracture characteristics such as size independent fracture energy (G(f)), size of fracture process zone (C-f), fracture toughness (K-IC) and crack tip opening displacement (CTODc) have been estimated based on the experimental observations. From the studies, it is observed that (i) UHSC has high fracture energy and ductility inspite of having a very low value of C-f; (ii) relatively much more homogeneous than other concretes, because of absence of coarse aggregates and well-graded smaller size particles; (iii) the critical SIF (K-IC) values are increasing with increase of beam depth and decreasing with increase of notch depth. Generally, it can be noted that there is significant increase in fracture toughness and CTODc. They are about 7 times in HSC1 and about 10 times in UHSC compared to those in HSC; (iv) for notch-to-depth ratio 0.1, Bazant's size effect model slightly overestimates the maximum failure loads compared to experimental observations and Karihaloo's model slightly underestimates the maximum failure loads. For the notch-to-depth ratio ranging from 0.2 to 0.4 for the case of UHSC, it can be observed that, both the size effect models predict more or less similar maximum failure loads compared to corresponding experimental values.