987 resultados para near-infrared spectroscopy
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is possible to detect gravitationally-lensed quasars spectroscopically if the spectra obtained during galaxy surveys are searched for the presence of quasar emission lines. The up-coming 6 degree Field (6dF) redshift survey on the United Kingdom Schmidt Telescope will involve obtaining similar to 10(5) spectra of near-infrared selected galaxies to a magnitude limit of K = 13. Applying previously developed techniques implies that at least one lens should be discovered in the 6dF survey, but that as many as ten could be found if quasars typically have B-J - K similar or equal to 8. In this model there could be up to fifty lensed quasars in the, sample, but most of them could only be detected by infrared spectroscopy.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) has been investigated using electron spin resonance (ESR) and FT-near infrared (FTNIR) spectroscopy. Data are used to evaluate the rate constants. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. AAc not only delays the Trommsdorff effect but also increases the onset of percentage total conversion at which the Trommsdorff region begins. With AAc fraction 0.5 and higher, no Trommsdorff effect was observed. Inclusion of AAc into copolymer structure mainly occurs in the Trommsdorf region or when the AAc fraction in the comonomer feed is dominant. This is associated with a drop in the concentration of propagating radicals. However, ESR spectra indicate that the MMA propagating radical is predominant during the reaction. In the comonomer mixtures where a Trommsdorff region can be observed, the addition of AAc does not produce any significant change in k(p) and k(t) in the steady state region. Major changes in k(p) and k(t) are observed after the gel point and glassy state, respectively. (C) 2001 Society of Chemical Industry.
Resumo:
The molecular orientation in a conventionally extruded PVC pipe, a uniaxially oriented PVC pipe and a biaxially oriented PVC pipe has been studied via Infrared dichroism. The degree of order or crystallinity has also been studied by Differential Scanning Calorimetry and also via Infrared Spectroscopy. The fundamental structural difference between the conventional and oriented pipes was that polymer chains were preferentially aligning in the hoop direction for oriented pipes whereas they were fairly isotropic in the conventional pipe with a slight preferential alignment in the axial direction. Analysis of the C-Cl stretching mode indicated that the uniaxially oriented pipe had much higher alignment of the C-Cl bond in the axial direction than the biaxial pipe, which correlates with higher fracture toughness for circumferential cracking in the biaxial pipe. Both DSC and Infrared spectroscopy detected little change in the crystallinity or order in the oriented pipes compared to the conventionally extruded pipes. (C) 2002 Kluwer Academic Publishers.
Resumo:
Visible range to telecom band spectral translation is accomplished using an amorphous SiC pi'n/pin wavelength selector under appropriate front and back optical light bias. Results show that background intensity works as selectors in the infrared region, shifting the sensor sensitivity. Low intensities select the near-infrared range while high intensities select the visible part according to its wavelength. Here, the optical gain is very high in the infrared/red range, decreases in the green range, stays close to one in the blue region and strongly decreases in the near-UV range. The transfer characteristics effects due to changes in steady state light intensity and wavelength backgrounds are presented. The relationship between the optical inputs and the output signal is established. A capacitive optoelectronic model is presented and tested using the experimental results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A chromatographic separation of active ingredients of Combivir, Epivir, Kaletra, Norvir, Prezista, Retrovir, Trivizir, Valcyte, and Viramune is performed on thin layer chromatography. The spectra of these nine drugs were recorded using the Fourier transform infrared spectroscopy. This information is then analyzed by means of the cosine correlation. The comparison of the infrared spectra in the perspective of the adopted similarity measure is possible to visualize with present day computer tools, and the emerging clusters provide additional information about the similarities of the investigated set of complex drugs.
Resumo:
Este trabalho descreve o desenvolvimento de um material sensor para creatinina por impressão molecular em estrutura polimérica (MIP) e a sua aplicação no desenvolvimento de um dispositivo de natureza potenciométrica para a determinação da molécula alvo em fluidos biológicos. A creatinina é um dos biomarcadores mais utilizados no acompanhamento da doença renal, já que é um bom indicador da taxa de filtração glomerular (TFG). Os materiais biomiméticos desenhados para interação com a creatinina foram obtidos por polimerização radicalar, recorrendo a monómeros de ácido metacrÃclico ou de vinilpiridina e a um agente de reticulação apropriado. De modo a aferir o efeito da impressão da creatinina na resposta dos materiais MIP à sua presença, foram também preparados e avaliados materiais de controlo, obtidos sem impressão molecular (NIP). O controlo da constituição quÃmica destes materiais, incluindo a extração da molécula impressa, foi realizado por Espectroscopia de Raman e de Infravermelho com Transformada de Fourrier. A afinidade de ligação entre estes materiais e a creatinina foi também avaliada com base em estudos cinéticos. Todos os materiais descritos foram integrados em membranas selectivas de elétrodos seletivos de ião, preparadas sem ou com aditivo iónico lipófilo, de carga negativa ou positiva. A avaliação das caracterÃsticas gerais de funcionamento destes elétrodos, em meios de composição e pH diferentes, indicaram que as membranas com materiais impressos e aditivo aniónico eram as únicas com utilidade analÃtica. Os melhores resultados foram obtidos em solução tampão Piperazine-N,N′-bis(2- ethanesulfonic acid), PIPES, de pH 2,8, condição que permitiu obter uma resposta quasi-Nernstiana, a partir de 1,6×10-5 mol L-1. Estes elétrodos demonstraram ainda uma boa selectividade ao apresentaram uma resposta preferencial para a creatinina quando na presença de ureia, carnitina, glucose, ácido ascórbico, albumina, cloreto de cálcio, cloreto de potássio, cloreto de sódio e sulfato de magnésio. Os elétrodos foram ainda aplicados com sucesso na análise de amostras sintéticas de urina, quando os materiais sensores eram baseados em ácido metacrilico, e soro, quando os materiais sensores utilizados eram baseados em vinilpiridina.
Resumo:
Inorg. Chem., 2003, 42 (4), pp 938–940 DOI: 10.1021/ic0262886
Resumo:
Infrared spectroscopy was used to characterize three series of a-Si:H/a-Si1-xCx:H multilayers in which their geometrical parameters were varied. The infrared active vibrational groups in their spectra and the interference fringes in their absorption-free zone were studied to analyze the interfaces and the changes that are produced in very thin layers. Our results show that hydrogen is bonded to silicon only in monohydride groups. No additional hydrogen could be detected at these interfaces. The deposition of very thin a-Si1-xCx:H layers seems to affect their porous structure, making them denser.
Resumo:
Context. MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts to explain its emission. Methods: We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results: We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ∼3 × 105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ∼1◦ uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the Hii region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158. We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions: Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37, extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source
Resumo:
In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.