971 resultados para must


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop rotation in center-pivot for phytonematode control: density variation, pathogenicity and crop loss estimation A field study conducted over three consecutive years, on a farm using crop rotation system under center-pivot and infested with the nematodes Pratylenchus brachyurus, P. zeae, Meloidogyne incognita, Paratrichodorus minor, Helicotylenchus dihystera, Mesocriconema ornata and M. onoense, demonstrated that intensive crop systems provide conditions for the maintenance of high densities of polyphagous phytonematodes. Of the crops established on the farm (cotton, maize, soybean and cowpea), cotton and soybean suffered the most severe crop losses, caused respectively by M. incognita and P. brachyurus. Since maize is a good host for both nematodes, but tolerant of M. incognita, its exclusion from cropping system would be favorable to the performance of cotton, soybean and cowpea. Results from experiments carried out in controlled conditions confirmed the pathogenicity of P. brachyurus on cotton. Additional management with genetic resistance was useful in fields infested with M. incognita, although the soybean performance was affected by low resistance of the cultivars used for P. brachyurus. In conclusion, crop rotation must be carefully planned in areas infested with polyphagous nematodes, specifically in the case of occurrence of two or more major pathogenic nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host suitability of oats for Pratylenchus brachyurus Black oat (Avena strigosa), white oat (A. sativa) and Algerian oat (A. byzantina) are extensively cultivated in the south of Brazil for grain, forage, hay and silage production, or as cover crop in no-tillage and crop-pasture integration systems. In both systems, the genotypes of oat used as cover crop must be nonhosts or poor hosts of damaging nematodes for summer cash crops. Taking into account the relevance of Pratylenchus brachyurus as a pathogen for many cash crops in Brazil, two experiments were carried out in a glasshouse in order to evaluate the host suitability of selected oat cultivars to this nematode. The initial population inoculated (Pi) were 92 specimens/plot in experiment 1, and 270 in experiment 2. At the end of experimental periods (86 days after inoculation in experiment 1 and 67 days in experiment 2), the final population (Pf) of P. brachyurus was estimated and the reproductive factor (RF = Pf/Pi) was calculated. The results demonstrated that black oat (RF = 0.04-1.03) is more valuable than Algerian oat (RF = 2.63-2.88) or white oat (RF = 1.37-1.93) for the management of P. brachyurus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown rot, caused by Monilinia fructicola, is the most widespread disease for organic peach production systems in Brazil. The objective of this study was to determine the favorable periods for latent infection by M. fructicola in organic systems. The field experiment was carried out during 2006, 2007 and 2008 using the cultivar Aurora. After thinning fruits were bagged using white paraffin bags, and the treatments were performed by removing the bags and exposing the fruit for four days to the natural infection during each of seven fruit stages from pit hardening to harvest. Throughout the entire growing season, the conidial density and the weather variables were measured and related to the disease incidence using multiple regression analyses. At the fourth day after harvest in each season, the cumulative disease incidence was assessed, and it ranged from 40 to 98%. The incidence of brown rot on fruit that were exposed during the embryo growing stage was lower than that of unbagged fruit throughout the entire season in 2006 and 2008. The relative humidity and the conidia density were significantly correlated to disease incidence. Based on our results, M. fructicola can infect peaches during any stage of fruit development, and control of the disease must be revised to account for organic peach production systems. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron (Fe) is an essential nutrient for plants, but it can generate oxidative stress at high concentrations. In this study, Coffea arabica L. cell suspension cultures were exposed to excess Fe (60 and 240 mu M) to investigate changes in the gene expression of ferritin and antioxidant enzymes. Iron content accumulated during cell growth, and Western blot analysis showed an increase of ferritin in cells treated with Fe. The expression of two ferritin genes retrieved from the Brazilian coffee EST database was studied. CaFER1, but not CaFER2, transcripts were induced by Fe exposure. Phylogenetic analysis revealed that CaFER1 is not similar to CaFER2 or to any ferritin that has been characterised in detail. The increase in ferritin gene expression was accompanied by an increase in the activity of antioxidant enzymes. Superoxide dismutase, guaiacol peroxidase, catalase, and glutathione reductase activities increased in cells grown in the presence of excess Fe, especially at 60 mu M, while the activity of glutathione S-transferase decreased. These data suggest that Fe induces oxidative stress in coffee cell suspension cultures and that ferritin participates in the antioxidant system to protect cells against oxidative damage. Thus, cellular Fe concentrations must be finely regulated to avoid cellular damage most likely caused by increased oxidative stress induced by Fe. However, transcriptional analyses indicate that ferritin genes are differentially controlled, as only CaFER1 expression was responsive to Fe treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolandia (Parana State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P > 0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research conducted on biomass for Ulcos (""Ultra-Low CO(2) Steelmaking"" European Integrated Project) has progressively focused on charcoal supply from tropical eucalyptus plantations. The sustainability of such plantations is being investigated from the viewpoint of their carbon, water and nutrient budgets: they must all be neutral or positive. Field research is producing results at the tree or stand level in several sites of Congo and Brazil, while a spatial model is developed to identify the conditions of biomass neutrality at the scale of the forest ecosystem. The productivity of biomass has been analyzed through the description of practices along the various supply-schemes that competitively feed the steel industry in Brazil and identification of bottlenecks for further expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Geographical indication plays an important role in the improvement of wine quality. In this context, the search for new grape growing areas has been constant. The Sao Francisco River Valley in the cerrado of Minas Gerais State (Brazil) has been pointed out in the Geoviticulture Multicriteria Climatic Classification System (MCC System) as a potentially winegrowing region, especially considering the autumn-winter period when night temperatures are favorable to grape ripening. In this work, we studied the maturation curves and fruit composition of four wine grape varieties (Syrah, Merlot, Cabernet-Sauvignon and Cabernet Franc) in two growing seasons in order to validate the state of Minas Gerais as a new winegrowing region in Brazil. Methods and results: Quality parameters (berry weight, pH, titratable acidity and total soluble solids) were measured weekly from veraison to harvest, and sugar, organic acid, anthocyanin and phenolic concentrations were determined in must and berry skins and seeds at harvest. Syrah berries showed the highest weight throughout maturation which contributed to higher yield (8.92 ton ha(-1)), followed closely by Merlot (8.07 ton ha(-1)). Bern, sugar concentrations were higher and malic acid levels were lower than the values usually observed in wine grapes harvested during summer in traditional winegrowing regions in Brazil. Cabernet Franc showed lower levels of anthocyanins and skin phenolics per kg berries and the highest values of seed phenolics, which were not affected by growing season. Conclusion: Weather conditions of the cerrado of Minas Gerais State in Brazil during winter allowed complete maturation of Cabernet-Sauvignon, Cabernet Franc, Merlot and Syrah cultivars as revealed by the satisfactory sugar, anthocyanin and skin phenolic accumulation. Significance and impact of the study: This study revealed the potential of the cerrado ecoregion in the northeast of Minas Gerais to become a new winemaking region in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenolic composition of heartwood from Robinia pseudoacacia, commonly known as false acacia, before and after toasting in cooperage was studied by HPLC-DAD and HPLC-DAD/ESI-MS/MS. A total of 41 flavonoid and nonflavonoid compounds were identified, some tentatively, and quantified. Seasoned acacia wood showed high concentrations of flavonoid and low levels of nonflavonoid compounds, the main compounds being the dihydroflavonols dihydrorobinetin, fustin, tetrahydroxy, and trihydroxymethoxy dihydroflavonol, the flavonol robinetin, the flavanones robtin and butin, and a leucorobinetinidin, none of which are found in oak wood. The low molecular weight (LMW) phenolic compounds present also differed from those found in oak, since compounds with a beta-resorcylic structure, gallic related compounds, protocatechuic aldehyde, and some hydroxycinnamic compounds are included, but only a little gallic and ellagic acid. Toasting changed the chromatographic profiles of extracts spectacularly. Thus, the toasted acacia wood contributed flavonoids and condensed tannins (prorobinetin type) in inverse proportion to toasting intensity, while LMW phenolic compounds were directly proportional to toasting intensity, except for gallic and ellagic acid and related compounds. Even though toasting reduced differences between oak and acacia, particular characteristics of this wood must be taken into account when considering its use in cooperage: the presence of flavonoids and compounds with beta-resorcylic structure and the absence of hydrolyzable tannins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study characterized 76 atypical enteropathogenic Escherichia coli (aEPEC) strains, previously classified by the eae(+) EAF-negative stx(-) genotype, isolated from children with diarrhea in Brazil. Presence of bfpA and bfpA/perA was detected in 2 and 6 strains, respectively. The expression of bundle-forming pilus (BFP), however, was observed by immunofluorescence in 1 bfpA and 3 bfpA/perA strains, classifying them as typical EPEC (tEPEC). The remaining 72 aEPEC strains were characterized by serotyping, intimin typing, adherence patterns to HEp-2 cells, capacity to induce actin aggregation (fluorescent actin staining test), and antimicrobial resistance. Our results show that aEPEC comprise a very heterogeneous group that does not present any prevalence or association regarding the studied characteristics. It also suggest that tEPEC and aEPEC must not be classified only by the reactivity with the EAF probe, and that the search of other markers present in pEAF, as well as the BFP expression, must be considered for this matter. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim of the study: Anacardium occidentale Linn. (cashew) is a Brazilian plant that is usually consumed in natura and is used in folk medicine. Anacardic acids (AAs) in the cashew nut shell liquid are biologically active as gastroprotectors, inhibitors of the activity of various deleterious enzymes, antitumor agents and antioxidants. Yet, there are no reports of toxicity testing to guarantee their use in vivo models. Materials and methods: We evaluated AAs biosafety by measuring the acute, subacute and mutagenic effects of AAs administration in BALB/c mice. In acute tests, BALB/c mice received a single oral dose of 2000 mg/kg, whereas animals in subacute tests received 300, 600 and 1000 mg/kg for 30 days. Hematological, biochemical and histological analyses were performed in all animals. Mutagenicity was measured with the acute micronucleus test 24 h after oral administration of 250 mg/kg AAs. Results: Our results showed that the AAs acute minimum lethal dose in BALB/c mice is higher than 2000 mg/kg since this concentration did not produce any symptoms. In subacute tests, females which received the highest doses (600 or 1000 mg/kg) were more susceptible, which was seen by slightly decreased hematocrit and hemoglobin levels coupled with a moderate increase in urea. Anacardic acids did not produce any mutagenic effects. Conclusions: The data indicate that doses less than 300 mg/kg did not produce biochemical and hematological alterations in BALB/c mice. Additional studies must be conducted to investigate the pharmacological potential of this natural substance in order to ensure their safe use in vivo. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed: the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) a parts per thousand 0.40 g l(-1)) and yield factor (Y (P/S) a parts per thousand 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.