946 resultados para medical imaging


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The aim of this study was to assess the consistency and performance of radiologists interpreting breast magnetic resonance imaging (MRI) examinations. Materials and Methods: Two test sets of eight cases comprising cancers, benign disease, technical problems and parenchymal enhancement were prepared from two manufacturers' equipment (X and Y) and reported by 15 radiologists using the recording form and scoring system of the UK MRI breast screening study [(MAgnetic Resonance Imaging in Breast Screening (MARIBS)]. Variations in assessments of morphology, kinetic scores and diagnosis were measured by assessing intraobserver and interobserver variability and agreement. The sensitivity and specificity of reporting performances was determined using receiver operating characteristic (ROC) curve analysis. Results: Intraobserver variation was seen in 13 (27.7%) of 47 of the radiologists' conclusions (four technical and seven pathological differences). Substantial interobserver variation was observed in the scores recorded for morphology, pattern of enhancement, quantification of enhancement and washout pattern. The overall sensitivity of breast MRI was high [88.6%, 95% confidence interval (CI) 77.4-94.7%], combined with a specificity of 69.2% (95% CI 60.5-76.7%). The sensitivities were similar for the two test sets (P=.3), but the specificity was significantly higher for the Manufacturer X dataset (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The effectiveness of synchronous carboplatin, etoposide, and radiation therapy in improving survival was evaluated by comparison of a matched set of historic control subjects with patients treated in a prospective Phase II study that used synchronous chemotherapy and radiation and adjuvant chemotherapy. Patients and Methods: Patients were included in the analysis if they had disease localized to the primary site and nodes, and they were required to have at least one of the following high-risk features: recurrence after initial therapy, involved nodes, primary size greater than 1 cm, or gross residual disease after surgery. All patients who received chemotherapy were treated in a standardized fashion as part of a Phase II study (Trans-Tasman Radiation Oncology Group TROG 96:07) from 1997 to 2001. Radiation was delivered to the primary site and nodes to a dose of 50 Gy in 25 fractions over 5 weeks, and synchronous carboplatin (AUC 4.5) and etoposide, 80 mg/m(2) i.v. on Days 1 to 3, were given in Weeks 1, 4, 7, and 10. The historic group represents a single institution's experience from 1988 to 1996 and was treated with surgery and radiation alone, and patients were included if they fulfilled the eligibility criteria of TROG 96:07. Patients with occult cutaneous disease were not included for the purpose of this analysis. Because of imbalances in the prognostic variables between the two treatment groups, comparisons were made by application of Cox's proportional hazard modeling. Overall survival, disease-specific survival, locoregional control, and distant control were used as endpoints for the study. Results: Of the 102 patients who had high-risk Stage I and II disease, 40 were treated with chemotherapy (TROG 96:07) and 62 were treated without chemotherapy (historic control subjects). When Cox's proportional hazards modeling was applied, the only significant factors for overall survival were recurrent disease, age, and the presence of residual disease. For disease-specific survival, recurrent disease was the only significant factor. Primary site on the lower limb had an adverse effect on locoregional control. For distant control, the only significant factor was residual disease. Conclusions: The multivariate analysis suggests chemotherapy has no effect on survival, but because of the wide confidence limits, a chemotherapy effect cannot be excluded. A study of this size is inadequately powered to detect small improvements in survival, and a larger randomized study remains the only way to truly confirm whether chemotherapy improves the results in high-risk MCC. (c) 2006 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 degrees C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated the effect of adjuvant whole brain irradiation (WBI) after surgery or radiosurgery for solitary brain metastases in a Phase III multicentre trial with randomization to 30-36 Gy WBI or observation. The study was closed early due to slow accrual after 19 patients (WBI 10, observation 9). There was no difference in CNS failure-free survival or overall survival between the arms. There was a trend to reduced CNS relapse with WBI (30% versus 78%, P = 0.12). Limited analysis of quality of life and neurocognitive function data revealed no evidence of difference between the arms. Our results are not inconsistent with two larger randomized trials and support the use of upfront WBI to decrease brain recurrence in this setting. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL). (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) has found great acceptance among the engineering community as a tool for research and design of processes that are practically difficult or expensive to study experimentally. One of these processes is the biomass gasification in a Circulating Fluidized Bed (CFB). Biomass gasification is the thermo-chemical conversion of biomass at a high temperature and a controlled oxygen amount into fuel gas, also sometime referred to as syngas. Circulating fluidized bed is a type of reactor in which it is possible to maintain a stable and continuous circulation of solids in a gas-solid system. The main objectives of this thesis are four folds: (i) Develop a three-dimensional predictive model of biomass gasification in a CFB riser using advanced Computational Fluid Dynamic (CFD) (ii) Experimentally validate the developed hydrodynamic model using conventional and advanced measuring techniques (iii) Study the complex hydrodynamics, heat transfer and reaction kinetics through modelling and simulation (iv) Study the CFB gasifier performance through parametric analysis and identify the optimum operating condition to maximize the product gas quality. Two different and complimentary experimental techniques were used to validate the hydrodynamic model, namely pressure measurement and particle tracking. The pressure measurement is a very common and widely used technique in fluidized bed studies, while, particle tracking using PEPT, which was originally developed for medical imaging, is a relatively new technique in the engineering field. It is relatively expensive and only available at few research centres around the world. This study started with a simple poly-dispersed single solid phase then moved to binary solid phases. The single solid phase was used for primary validations and eliminating unnecessary options and steps in building the hydrodynamic model. Then the outcomes from the primary validations were applied to the secondary validations of the binary mixture to avoid time consuming computations. Studies on binary solid mixture hydrodynamics is rarely reported in the literature. In this study the binary solid mixture was modelled and validated using experimental data from the both techniques mentioned above. Good agreement was achieved with the both techniques. According to the general gasification steps the developed model has been separated into three main gasification stages; drying, devolatilization and tar cracking, and partial combustion and gasification. The drying was modelled as a mass transfer from the solid phase to the gas phase. The devolatilization and tar cracking model consist of two steps; the devolatilization of the biomass which is used as a single reaction to generate the biomass gases from the volatile materials and tar cracking. The latter is also modelled as one reaction to generate gases with fixed mass fractions. The first reaction was classified as a heterogeneous reaction while the second reaction was classified as homogenous reaction. The partial combustion and gasification model consisted of carbon combustion reactions and carbon and gas phase reactions. The partial combustion considered was for C, CO, H2 and CH4. The carbon gasification reactions used in this study is the Boudouard reaction with CO2, the reaction with H2O and Methanation (Methane forming reaction) reaction to generate methane. The other gas phase reactions considered in this study are the water gas shift reaction, which is modelled as a reversible reaction and the methane steam reforming reaction. The developed gasification model was validated using different experimental data from the literature and for a wide range of operating conditions. Good agreement was observed, thus confirming the capability of the model in predicting biomass gasification in a CFB to a great accuracy. The developed model has been successfully used to carry out sensitivity and parametric analysis. The sensitivity analysis included: study of the effect of inclusion of various combustion reaction; and the effect of radiation in the gasification reaction. The developed model was also used to carry out parametric analysis by changing the following gasifier operating conditions: fuel/air ratio; biomass flow rates; sand (heat carrier) temperatures; sand flow rates; sand and biomass particle sizes; gasifying agent (pure air or pure steam); pyrolysis models used; steam/biomass ratio. Finally, based on these parametric and sensitivity analysis a final model was recommended for the simulation of biomass gasification in a CFB riser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been used successfully in the segmentation of images from several modalities. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper we present an extension of the fuzzy segmentation algorithm that achieves the segmentation of textures by employing adaptive affinity functions as long as we extend the algorithm to tridimensional images. The adaptive affinity functions change the size of the area where they compute the texture descriptors, according to the characteristics of the texture being processed, while three dimensional images can be described as a finite set of two-dimensional images. The algorithm then segments the volume image with an appropriate calculation area for each texture, making it possible to produce good estimates of actual volumes of the target structures of the segmentation process. We will perform experiments with synthetic and real data in applications such as segmentation of medical imaging obtained from magnetic rosonance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bien que les technologies d’imagerie soient un acquis réel de la médecine moderne, leur introduction ne semble pas avoir été précédée d’une démarche réflexive suffisante qui aurait permis d’anticiper les multiples enjeux que rencontre la pratique radiologique actuelle. En effet, à force de se focaliser sur les acquis techniques et scientifiques, le cadre de radioprotection en place semble ne pas avoir suffisamment considéré l’apport essentiel que représente la connaissance des aspects sociaux, éthiques et humains que peuvent amener des domaines comme la bioéthique. Cette insuffisance fait en sorte que l’on se retrouve aujourd’hui face à des enjeux importants relatifs à la radioprotection du patient comme la surutilisation des examens radiologiques ou encore le manque d’information des acteurs du milieu face aux risques des rayonnements. Après un état des lieux des enjeux éthiques en radiologie diagnostique ayant un impact sur la radioprotection médicale des patients, un enjeu majeur de la pratique actuelle, qui est la justification inadéquate des prescriptions d’examens radiologiques, sera analysé selon une approche par principes. De cet exercice, visant à démontrer comment l’éthique peut concrètement contribuer à la radioprotection, découle l’impératif d’une vision nouvelle et globale permettant de proposer des pistes de solution aux controverses liées à l’utilisation actuelle de l’imagerie. Dans une perspective de santé des populations, il est important de contribuer à la diminution de la banalisation du recours au rayonnement ionisant dans la pratique médicale diagnostique en alliant bioéthique et radioprotection. Ce projet de recherche se veut être une étape limitée, mais nécessaire dans l’établissement de ce dialogue interdisciplinaire.