Segmentação fuzzy de objetos tridimensionais com propriedades texturais


Autoria(s): Silva Neto, José Francisco da
Contribuinte(s)

Carvalho, Bruno Motta de

07284361409

http://lattes.cnpq.br/1656251260351405

79228860472

http://lattes.cnpq.br/0330924133337698

Santos, Selan Rodrigues dos

47337761368

http://lattes.cnpq.br/4022950700003347

Mendes Neto, Francisco Milton

67304133449

http://lattes.cnpq.br/5725021666916341

Data(s)

28/01/2016

28/01/2016

25/09/2014

Resumo

Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been used successfully in the segmentation of images from several modalities. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper we present an extension of the fuzzy segmentation algorithm that achieves the segmentation of textures by employing adaptive affinity functions as long as we extend the algorithm to tridimensional images. The adaptive affinity functions change the size of the area where they compute the texture descriptors, according to the characteristics of the texture being processed, while three dimensional images can be described as a finite set of two-dimensional images. The algorithm then segments the volume image with an appropriate calculation area for each texture, making it possible to produce good estimates of actual volumes of the target structures of the segmentation process. We will perform experiments with synthetic and real data in applications such as segmentation of medical imaging obtained from magnetic rosonance

Segmentação digital de imagens é o processo de atribuir rótulos distintos a diferentes objetos em uma imagem digital, e o algoritmo de segmentação fuzzy tem sido utilizado com sucesso na segmentação de imagens de diversas modalidades. Contudo, o algoritmo tradicional de segmentação fuzzy falha ao segmentar objetos que são caracterizados por texturas cujos padrões não podem ser descritos adequadamente por simples estatísticas computadas sobre uma área restrita. Neste trabalho apresentamos uma extensão do algoritmo de segmentação fuzzy que realiza segmentação de texturas empregando funções de afinidade adaptativas e o estendemos a imagens tridimensionais. Funções de afinidade adaptativas mudam o tamanho da área em que são calculados os descritores da textura de acordo com as características da textura processada, enquanto imagens tridimensionais podem ser descritas como um conjunto finito de imagens bidimensionais. O algoritmo então segmenta o volume com uma área apropriada calculada para cada textura, tornando possível obter boas estimativas dos volumes reais das estruturas alvo do processo de segmentação. Experimentos serão realizados com dados sintéticos e reais obtidos no estudo de segmentação de tumores cerebrais em imagens médicas adquiridas através de exames de Ressonância Magnética

Identificador

SILVA NETO, José Francisco da. Segmentação fuzzy de objetos tridimensionais com propriedades texturais. 2014. 50f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2014.

http://repositorio.ufrn.br/handle/123456789/19668

Idioma(s)

por

Publicador

Universidade Federal do Rio Grande do Norte

Brasil

UFRN

PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO

Direitos

Acesso Aberto

Palavras-Chave #Segmentação fuzzy #Segmentação de texturas #Segmentação volumétrica #Divergência skew #CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Tipo

masterThesis