954 resultados para machine tool
Resumo:
In this article I outline an Australian Indigenous women's standpoint theory. I argue that an Indigenous women's standpoint generates problematics informed by our knowledges and experiences. Acknowledging that Indigenous women's individual experiences will differ due to intersecting oppressions produced under social, political, historical and material conditions that we share consciously or unconsciously. These conditions and the sets of complex relations that discursively constitute us in the everyday are also complicated by our respective cultural differences and the simultaneity of our compliance and resistance as Indigenous sovereign female subjects.
Resumo:
This paper presents an illustrative demonstration of the qualitative data analysis tool NVivo (version 2.0), as employed across a multi-method research design as a comprehensive tool in support of overall research management. The paper will be of interest to (a) novice researchers, as a reference in their research design efforts; (b) academics, involved in research training, where this narrative can be used as a rich teaching case and; potentially to (c) vendors, of similar software tools, who may identify potential new tool applications and valuable tool enhancements.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
In recent years a number of urban sustainability assessment frameworks are developed to better inform policy formulation and decision-making processes. This paper introduces one of these attempts in developing a comprehensive assessment tool—i.e., Micro-level Urban-ecosystem Sustainability IndeX (MUSIX). Being an indicator-based indexing model, MUSIX investigates the environmental impacts of land-uses on urban sustainability by measuring urban ecosystem components in local scale. The paper presents the methodology of MUSIX and demonstrates the performance of the model in a pilot test-bed—i.e., in Gold Coast, Australia. The model provides useful insights on the sustainability performance of the test-bed area. The parcel-scale findings of the indicators are used to identify local problems considering six main issues of urban development—i.e., hydrology; ecology; pollution; location; design, and; efficiency. The composite index score is used to propose betterment strategies to guide the development of local area plans in conjunction with the City's Planning Scheme. In overall, this study has shown that parcel-scale environmental data provides an overview of the local sustainability in urban areas as in the example of Gold Coast, which can also be used for setting environmental policy, objectives and targets.
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
In the context of modern western psychologised, techno-social hybrid realities, where individuals are incited constantly to work on themselves and perform their self-development in public, the use of online social networking sites (SNSs) can be conceptualised as what Foucault has described as a ‘technique of self’. This article explores examples of status updates on Facebook to reveal that writing on Facebook is a tool for self-formation with historical roots. Exploring examples of self-writing from the past, and considering some of the continuities and discontinuities between these age-old practices and their modern translations, provides a non-technologically deterministic and historically aware way of thinking about the use of new media technologies in modern societies that understands them to be more than mere tools for communication.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this technology. These interviews are the main contribution of this paper. Several interesting applications were determined, suggesting possible usage in a wide range of domains. Paper-based sketching, mixed reality and sketch augmentation techniques complement each other, and the combination results in a highly intuitive interface.
Resumo:
In this paper, we provide the results of a field study of a Ubicomp system called CAM (Cooperative Artefact Memory) in a Product Design studio. CAM is a mobile-tagging based messaging system that allows designers to store relevant information onto their design artefacts in the form of messages, annotations and external web links. From our field study results, we observe that the use of CAM adds another shared ‘space’ onto these design artefacts – that are in their natural settings boundary objects themselves. In the paper, we provide several examples from the field illustrating how CAM helps in the design process.
Resumo:
Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.
Resumo:
Australia’s building stock includes many older commercial buildings with numerous factors that impact energy performance and indoor environment quality. The built environment industry has generally focused heavily on improving physical building design elements for greater energy efficiency (such as retrofits and environmental upgrades), however there are noticeable ‘upper limits’ to performance improvements in these areas. To achieve a stepchange improvement in building performance, the authors propose that additional components need to be addressed in a whole of building approach, including the way building design elements are managed and the level of stakeholder engagement between owners, tenants and building managers. This paper focuses on the opportunities provided by this whole-of-building approach, presenting the findings of a research project undertaken through the Sustainable Built Environment National Research Centre (SBEnrc) in Australia. Researchers worked with a number of industry partners over two years to investigate issues facing stakeholders at base building and tenancy levels, and the barriers to improving building performance. Through a mixed-method, industry-led research approach, five ‘nodes’ were identified in whole-of-building performance evaluation, each with interlinking and overlapping complexities that can influence performance. The nodes cover building management, occupant experience, indoor environment quality, agreements and culture, and design elements. This paper outlines the development and testing of these nodes and their interactions, and the resultant multi-nodal tool, called the ‘Performance Nexus’ tool. The tool is intended to be of most benefit in evaluating opportunities for performance improvement in the vast number of existing low-performing building stock.
Resumo:
Sustainability is a key driver for decisions in the management and future development of organisations and industries. However, quantifying and comparing sustainability across the triple bottom line (TBL) of economy, environment and social impact, has been problematic. There is a need for a tool which can measure the complex interactions within and between the environmental, economic and social systems which affect the sustainability of an industry in a transparent, consistent and comparable way. The authors acknowledge that there are currently numerous ways in which sustainability is measured and multiple methodologies in how these measurement tools were designed. The purpose of this book is to showcase how Bayesian network modelling can be used to identify and measure environmental, economic and social sustainability variables and to understand their impact on and interaction with each other. This book introduces the Sustainability Scorecard, and describes it through a case study on sustainability of the Australian dairy industry. This study was conducted in collaboration with the Australian dairy industry.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
Dynamics is an essential core engineering subject and it is considered as one of the hardest subjects in the engineering discipline. Many students acknowledged that Dynamics is very hard to understand and comprehend the abstract concepts through traditional teaching methods with normal tutorials and assignments. In this study, we conducted an investigation on the application of visualization technique to help students learning the unit with the fundamental theory displayed in the physical space. The research was conducted based on the following five basic steps of Action Learning Cycle including: Identifying problem, Planning action, Implementing, Evaluating, and Reporting. Through our studies, we have concluded that visualization technique can definitely help students in learning and comprehending the abstract theories and concepts of Dynamics.