905 resultados para machine and metal product industry
Resumo:
There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 °C in N 2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO 2 atmosphere the final residue up to 980 °C was: MnO, Fe 3O 4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu 2O.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Processo FAPESP: 10/20655-3
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Aim: To evaluate the use of organic acids (OAs) and competitive exclusion (CE) product administered continuously in the feed and transiently in drinking water on the control of Salmonella enterica subspecie enterica serotype Enteritidis (SE) prior to slaughter.Methods and Results: The influence of treatments were evaluated on pH, population of the lactic acid bacteria (LAB) and bacteria of the family Enterobacteriaceae, concentration of volatile fatty acids and SE colonization in the crop and caecum. The birds were challenged with SE 24 h before being slaughtered, and then, the caeca and crop were removed and subjected to SE counts. Continuous administration of OAs reduced the population of bacteria from the Enterobacteriaceae family in both crop and caecum, positively influenced the butyric acid concentration and reduced SE colonization in the caecum. The diet supplemented with CE product positively influenced the quantity of LAB in the crop and caecum, elevated the butyric acid concentration and reduced both Enterobacteriaceae quantity and SE colonization in the caecum. There was no effect from administering the treatments via drinking water on the variables measured.Conclusions: Continuous supplementation in feed with OAs and CE product reduced SE colonization of the caeca.Significance and Impact of the Study: Supplementation of OAs and CE product in diet to turkeys can reduce the SE load, potentially leading to a lower contamination risk of meat during slaughter.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
Binary and ternary systems of Ni2+, Zn2+, and Pb2+ were investigated at initial metal concentrations of 0.5, 1.0 and 2.0 mM as competitive adsorbates using Arthrospira platensis and Chlorella vulgaris as biosorbents. The experimental results were evaluated in terms of equilibrium sorption capacity and metal removal efficiency and fitted to the multi-component Langmuir and Freundlich isotherms. The pseudo second order model of Ho and McKay described well the adsorption kinetics, and the FT-IR spectroscopy confirmed metal binding to both biomasses. Ni2+ and Zn2+ interference on Pb2+ sorption was lower than the contrary, likely due to biosorbent preference to Pb. In general, the higher the total initial metal concentration, the lower the adsorption capacity. The results of this study demonstrated that dry biomass of C. vulgaris behaved as better biosorbent than A. platensis and suggest its use as an effective alternative sorbent for metal removal from wastewater. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
PURPOSE: To evaluate the in vitro fracture resistance of roots with glass-fiber and metal dowels with different designs. METHODS: Fifty-endodontically treated maxillary central incisors were embedded in acrylic resin. Ten of them received only the coronary preparation, and the remaining forty were embedded (except for 4mm of the cervical area) after removing the clinical crowns. Specimens were divided into five groups (n=10): control (teeth with only coronary preparation), cylindrical cast dowel, conical cast dowel, cylindrical glass-fiber dowel and conical glass-fiber dowel. Specimens were subjected to an increasing compressive load (N) until fracture. RESULTS: ANOVA indicated significant difference (P<.05) among the groups, and the Tukey-Kramer´s test identified these differences. The control group (867±243 N) presented the highest values and was statistically similar to cylindrical glass-fiber dowel group (711±180 N). There is no significant difference among the metal dowel cylindrical (435±245 N) or conical (585±164 N) group and conical glass-fiber dowel (453±112 N). Cylindrical glass-fiber dowel (711±180 N) and conical cast dowel and core (585±164 N) groups had intermediate values and did not differ from each other. CONCLUSIONS: Cylindrical glass fiber dowels represent a viable alternative to the cast-metal dowel cylindrical or conical. Cylindrical glass fiber dowels also increase endodontically treated incisors' resistance to fracture.
Resumo:
Background In the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep. Methods Materials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically. Results Cobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials. Conclusion This study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior.
Resumo:
Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.
Resumo:
OBJECTIVES: Aim of the study was to evaluate the patients' sensations during and after laserneedle versus metal needle acupuncture. STUDY DESIGN: The prospective study was performed at the gynaecological outpatient department of a University Teaching Hospital of Bern, Switzerland. Thirty female patients per group were included in the study and randomized into laserneedle or metal needle group. All women visited the acupuncture out patient department because of gynaecological disorders. Age of the patients in the metal needle group was 38 years in median (range 18-73 years); mean age was 41+/-13.3. Age in the laserneedle group was 36 years in median (range 16-60 years) and mean age was 39.1+/-12.2. Interventions were laserneedle acupuncture and metal needle acupuncture. Patients answered a questionnaire before, after the first treatment and prior to the second treatment. The questionnaires asked about the patients' knowledge of the various acupuncture methods and their health condition before treatment, their perception of pain, warmth, tiredness and relaxation during or after application of the needles or during or after the treatment. Statistics were performed by Graph Pad InStat 3 for windows. RESULTS: The common metal needle technique was well known by the patients in comparison to the laserneedle method (p<0.0001***). Laserneedle acupuncture is a method which is painless (p<0.0001***), energy inducing and relaxing (p=0.0257*) which leads to a warming sensation (p=0.0009***) during treatment. CONCLUSION: Both methods laserneedle and metal needle acupuncture are valuable methods in achieving relaxation and improvement of gynaecological symptoms. Laserneedle acupuncture is painless and easy to apply which is a valuable reason to support this technique in the future.