970 resultados para irradiation uniformity of laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Shock Processing (LSP) has been demonstrated as an emerging technique for the induction of RS’s fields in subsurface layers of relatively thick specimens. However, the LSP treatment of relatively thin specimens brings, as an additional consequence, the possible bending in a process of laser shock forming. This effect poses a new class of problems regarding the attainment of specified RS’s depth profiles in the mentioned type of sheets, and, what can be more critical, an overall deformation of the treated component. The analysis of the problem of LSP treatment for induction of tentatively through-thickness RS’s fields for fatigue life enhancement in relatively thin sheets in a way compatible with reduced overall workpiece deformation due to spring-back self-equilibration is envisaged in this paper. The coupled theoretical-experimental predictive approach developed by the authors has been applied to the specification of LSP treatments for achievement of RS's fields tentatively able to retard crack propagation on normalized specimens. A convergence between numerical code results and experimental results coming from direct RS's measurement is presented as a first step for the treatment of the normalized specimens under optimized conditions and verification of the crack retardation properties virtually induced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method of laser frequency locking in which the feedback signal is directly proportional to the detuning from an atomic transition, even at detunings many times the natural linewidth of the transition. Our method is a form of sub-Doppler polarization spectroscopy, based on measuring two Stokes parameters (I-2 and I-3) of light transmitted through a vapor cell. It extends the linear capture range of the lock loop by as much as an order of magnitude and provides frequency discrimination equivalent to or better than those of other commonly used locking techniques. (C) 2004 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed to investigate how local pain relief is mediated by laser therapy and how dose affects the relationship. Methods: Inflammation was induced in the hind-paws of Wistar rats. Two groups of rats received 780-nm laser therapy (Spectra-Medics Pty Ltd.) at one of two doses (2.5 and 1 J/cm(2)). One group acted as a control. Scores of nociceptive threshold were recorded using paw pressure and paw thermal threshold measures. Results: A dose of 1 J/cm(2) had no statistically significant effect on antinociceptive responses. A dose of 2.5 J/cm(2) demonstrated a statistically significant effect on paw pressure threshold (p < 0.029) compared to controls. There was no difference in paw thermal threshold responses and paw volumes at either dose. Immunohistochemistry in control animals demonstrated normal beta-endorphin containing lymphocytes in control inflamed paws but no beta-endorphin containing lymphocytes in rats that received laser at 2.5 J/cm(2). Conclusion: The results confirm previous findings that the effect of laser therapy is dose-related. The mechanism of effect may occur via a differentiated pressure-sensitive neural pathway rather than a thermal-sensitive neural pathway. The significance of the immunohistochemistry findings remains unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O laser de baixa intensidade (LBI) tem demonstrado efeitos bioestimulatórios na movimentação ortodôntica, acelerando a resposta celular e, reduzindo o tempo de tratamento. Entretanto, o uso do LBI seria mais efetivo com maior potência, menor tempo (única irradiação), ou a junção da menor potência e tempo em aplicação fracionada? Este estudo visou quantificar a movimentação de molares de 64 ratos e suas alterações histológicas, submetidos a uma força ortodôntica, liberada por meio de uma mola fechada de níquel-titânio (Niti/25gf), calibrada em 20gf. Os animais foram divididos em quatro grupos (cada grupo com 16 ratos), de acordo com os seguintes protocolos de irradiação do laser GaAlAs(780nm): grupo controle , submetidos à movimentação ortodôntica mas sem aplicação do LBI ; grupo total 1 (P=60mW/DE=15J/cm²/Et=6J/t=100seg), com a movimentação ortodôntica associada à única aplicação do LBI laser (P=60mW/DE=15J/cm²/Et=6J/t=100seg) no dia zero. Grupo total 2 em que o LBI foi aplicado no dia 0, segundo o protocolo P=20mW/DE=15J/cm²/E=6J/t=300seg;,; e Grupo fracionado em que o LBI foi aplicado nos dias 0, 3 e 7, empregando-se o protocolo (P=20mW/DE=5J/cm²/E=2J/t=100seg). Os sacrifício dos ratos foi realizado em quatro momentos (dias 1,4,8 e 15), sendo que 4 ratos de cada grupo foi sacrificado em cada um dos dias. A quantidade de movimentação ortodôntica foi mensurada in loco por meio de paquímetro digital, antes da instalação das molas e, imediatamente após o sacrifício dos animais. Para o exame histológico, as maxilas foram removidas, preparadas e coradas pelo sistema H/E. Os resultados foram avaliados pela Análise de Variância, seguida do teste Tukey (p<0,05). O grupo fracionado apresentou maior movimentação dentária frente aos demais nos dias 4 e 8, sendo que os grupos total 1 e 2 demonstraram maior movimentação dentária que o controle somente no dia 8. Não houve diferença estatisticamente significante entre os grupos total 1 e 2 em todo o período avaliado. Este estudo concluiu que, o laser de baixa intensidade acelerou a movimentação dentária, salientando-se o efeito da aplicação fracionada em relação às aplicações únicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - We performed a study of laser panretinal photocoagulation in 20 patients with proliferative retinopathy. We compared short exposure, high-energy laser settings with conventional settings, using a 532?nm, frequency doubled, Neodymium–Yag laser and assessed the patients in terms of pain experienced and effectiveness of treatment. Methods - Twenty patients having panretinal photocoagulation for the first time underwent random allocation to treatment of the superior and inferior hemi-retina. Treatment A used ‘conventional’ parameters: exposure time 0.1?s, power sufficient to produce a visible grey-white burns, spot size 300?µm. The other hemi- retina was treated with treatment B using exposure 0.02?s, 300?µm and sufficient power to have similar endpoint. All patients were asked to evaluate severity of pain on a visual analogue scale. (0=no pain, 10=most severe pain). All patients were masked as to the type of treatment and the order of carrying out the treatment on each patient was randomised. Patients underwent fundus photography and were followed up for 6–45 months. Results - Seventeen patients had proliferative diabetic retinopathy, two had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The mean response to treatment A was 5.11, compared to 1.40 treatment B, on the visual analogue scale, which was statistically significant (P=0.001). All patients preferred treatment B. Further treatments, if required, were performed with treatment B parameters and long-term follow-up has shown no evidence of undertreatment. Conclusions - Shortening exposure time of retinal laser is significantly less painful but equally effective as conventional parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation Purpose:We conducted a study to determine if the spectral domain optical coherence tomography (SD-OCT) could be used as a tool to assess effective delivery of threshold and subthreshold laser burns created using 532nm green wavelength laser. Methods:10 patients planned for panretinal photocoagulation (PRP) for proliferative diabetic retinopathy were included in this study. Before initiating the full PRP, a row of moderately white laser burns as used for conventional PRP was created using 532 nm laser set at threshold power for 0.1 second with 300 microns spot size. Further rows of laser burns were created by altering the duration and power settings on the laser device. The area of the retina irradiated with laser was imaged using the Topcon SD-OCT within a few minutes of laser treatment. Results:Laser burns created using threshold power were seen on the OCT scan in all cases as a homogenous diffuse increase in reflectivity extending across the full thickness of retina (Fig 1). Retinal burns created by lowering the duration of laser pulse to 0.01s were barely visible ophthalmoscopically but were clearly detectable on the OCT scan as a localised, well-defined area of increased tissue reflectivity (Fig 2). Conclusions:OCT is a useful to tool to assess the delivery of laser burns created using the 532 nm green laser. Burns of a subthreshold intensity that may not be visible ophthalmoscopically result in retinal changes that are clearly detectable on OCT imaging. Further studies would be needed to assess the clinical effectiveness of subthreshold laser treatment for retinal vascular diseases using the 532 nm green laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focusing of multimode laser diode beams is probably the most significant problem that hinders the expansion of the high-power semiconductor lasers in many spatially-demanding applications. Generally, the 'quality' of laser beams is characterized by so-called 'beam propagation parameter' M2, which is defined as the ratio of the divergence of the laser beam to that of a diffraction-limited counterpart. Therefore, M2 determines the ratio of the beam focal-spot size to that of the 'ideal' Gaussian beam focused by the same optical system. Typically, M2 takes the value of 20-50 for high-power broad-stripe laser diodes thus making the focal-spot 1-2 orders of magnitude larger than the diffraction limit. The idea of 'superfocusing' for high-M2 beams relies on a technique developed for the generation of Bessel beams from laser diodes using a cone-shaped lens (axicon). With traditional focusing of multimode radiation, different curvatures of the wavefronts of the various constituent modes lead to a shift of their focal points along the optical axis that in turn implies larger focal-spot sizes with correspondingly increased values of M2. In contrast, the generation of a Bessel-type beam with an axicon relies on 'self-interference' of each mode thus eliminating the underlying reason for an increase in the focal-spot size. For an experimental demonstration of the proposed technique, we used a fiber-coupled laser diode with M2 below 20 and an emission wavelength in ~1μm range. Utilization of the axicons with apex angle of 140deg, made by direct laser writing on a fiber tip, enabled the demonstration of an order of magnitude decrease of the focal-spot size compared to that achievable using an 'ideal' lens of unity numerical aperture. © 2014 SPIE.