957 resultados para flame-retardant
Resumo:
Copyright estates have been unduly empowered by the extension of the term of copyright protection in Europe, the United States, Australia and elsewhere. The Estate of the Irish novelist, James Joyce, has been particularly aggressive in policing his revived copyrights. The "keepers of the flame" have relied upon threats of legal action to discourage the production of derivative works based upon the canonical texts of the novelist. The Estate has also jealously guarded the reputation of the author by vetoing the use of his work in various scholarly productions. Most radically of all, the grandson Stephen Joyce threatened to take legal action to prevent the staging of "Rejoyce Dublin 2004", a festival celebrating the centenary of Bloomsday. In response, the Irish Parliament rushed through emergency legislation, entitled the Copyright and Related Rights (Amendment) Act 2004 (Ireland) to safeguard the celebrations. The legislation clarified that a person could place literary and artistic works on public exhibition, without breaching the copyright vested in such cultural texts. Arguably, though, the ad hoc legislation passed by the Irish Parliament is inadequate. The Estate of James Joyce remains free to exercise its suite of economic and moral rights to control the use and adaptation of works of the Irish novelist. It is contended that copyright law needs to be revised to promote the interests of libraries and other cultural institutions. Most notably, the defence of fair dealing should be expanded to allow for the transformative use of copyright works, particularly in respect of adaptations and derived works. There should be greater scope for compulsory licensing and crown acquisition of revived copyrights.
Resumo:
This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.
Resumo:
One of the problems associated with outdoor polymeric insulators is tracking and erosion of the weathershed which can directly influence the reliability of the power system. Flame retardants are added to the base material to enhance its tracking and erosion resistance. Hydroxide fillers are regarded as the best flame retardants. This paper deals with studies related to nano - sized magnesium dihydroxide (MDH) and micron-sized Alumina Trihydrate (ATH) fillers as flame retardants in RTV silicone rubber. Tracking and erosion resistance studies were carried out on MDH and ATH silicone rubber composites using an inclined plane tracking and erosion (IPT) resistance tester. The MDH filled (5% by wt) composites performed much better than ATH composites in terms of eroded mass, depth of erosion, width and length of erosion. The eroded mass of MDH composite is 49.8 % that of ATH composite which can be attributed to high surface area and higher thermal stability of MDH nanofillers.
Resumo:
Ammonium perchlorate (AP) has been coated with polystyrene (PS), cellulose acetate (CA), Novolak resin and polymethylmethacrylate (PMMA) by a solvent/nonsolvent method which makes use of the coacervation principle. The effect of polymer coating on AP decomposition has been studied using thermogravimetry (TG) and differential thermal analysis (DTA). Polymer coating results in the desensitization of AP decomposition. The observed effect has been attributed to the thermophysical and thermochemical properties of the polymer used for coating. The effect of polystyrene coating on thermal decomposition of aluminium perchlorate trihydrazinate and ammonium nitrate as well as on the combustion of AP-CTPB composite propellants has been studied.
Resumo:
This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant Dρ 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.
Resumo:
The influence of MnO2, CuO, and NiO on the thermal decomposition and explosivity of arylammonium perchlorates has been studied by differential thermal analysis (DTA) and explosive sensitivity measurements. The metal oxides considerably sensitize both decomposition and explosion and the sensitizing effect is in the order NiO < CuO < MnO2. The accelerated decomposition or explosion seems to occur via the formation of an intermediate, metal perchlorate arylamine complex. The experimental evidence for the mechanism put forward has been included.
Resumo:
the heats of reaction of an oxygen-balanced ternary fuel-oxidizer system have been shown to be linearly related to the total oxidizing valences (P0) of the composition. Because calculation of P0 is simple, the method is found to help in evaluating the energetics of such systems. The accuracy of the method when applied to various ternary systems has been discussed.
Resumo:
Abstract is not available.
Resumo:
A new class of solid compounds, viz., bisthiocarbonohydrazones and thiosemicarbazones, have been found to be hypergolic with fuming nitric acid. The observed ignition delays of these hypergols have been compared with those of the monothiocarbonohydrazones-nitric acid systems and explained in terms of the chemical reactions-neutralization, oxidation, and nitration-occurring in the preignition stage. p-Nitrobenzoic acid, benzoic acid, benzaldehyde, sulfur trioxide, nitrogen dioxide, and nitrogen have been isolated as preignition reaction intermediates in the mono- and bisbenzaldehydethiocarbonohydrazone-nitric acid systems. A scheme of reactions occurring in the preignition stage is proposed based on the formation of these products.
Resumo:
An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (r' ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).
Resumo:
The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.
Resumo:
During the thermal decomposition of orthorhombic ammonium perchlorate (AP) at 230°C, where the decomposition is only up to 30 wt %, there is an accumulation in the solid of acids, the concentration of which increases up to 15% decomposition, after which it decreases till it reaches the original value. Similar observations have been made in the polystyrene (PS)/AP propellant systems. Aging studies of PS/AP propellants have been carried out earlier [1], where it has been shown that for the aged propellants the thermal decomposition (TD) rate at 230°C and 260°C and ambient pressure burning rate (Image ) both increase and this increase is due to the formation of reactive intermediate “polystyrene peroxide (PSP).” In the present studies it has been observed that during the aging of the propellant at 150°C, the acid is formed and gets accumulated in the propellant, which may also be responsible for the increase in TD rate and perhaps may be more effective than PSP.
Resumo:
A study of the burning rates of compressed mixtures of ammonium perchlorate (AP) and trimethylammonium perchlorate (TMAP) has been carried out at ambient pressure. The overall increase in the linear burning rate, showing a maximum at a composition having 80% TMAP, has been discussed in terms of factors such as stoichiometry, presence of faster burning component, and eutectic melt formation. The thermal decomposition studies of the mixtures, using isothermal thermogravimetry and differential thermal analysis techniques, indicate the possibility of eutectic melt formation.
Resumo:
Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].
Resumo:
The heats of combustion of mono-, di-, tri- and tetramethylammonium perchlorates have been determined by bomb calorimetry. The data have been used to explain why the thermal behavior of ammonium perchlorate (AP) is considerably modified in presence of these compounds as shown by differential thermal analysis. Above a particular concentration of methylammonium perchlorate (MAP), AP ignites in a single step around 290°C. The minimum concentration of a MAP (mono-, di-, tri- or tetra-) needed to cause ignition of AP in a single step depends on intramolecular “elemental stoichiometric coefficient” of the mixtures that has the same value regardless of the MAP. Furthermore, the calorimetric values of these mixtures are the same. The heat evolved on ignition of such a composition appears to determine the lower concentration limit of combustion of its mixture with AP.