999 resultados para fibrin(ogen)olytic activity
Resumo:
Background Not getting enough physical activity leads to poorer health. Regular physical activity can reduce the risk of chronic disease and improve one’s health and well-being. The lack of physical activity is a common and growing problem in many countries. We sought to evaluate the effects of community wide, multi-strategic interventions upon the physical activity patterns of populations. Method We undertook a Cochrane Systematic Review which included an extensive search of databases, including studies which met pre-determined criteria, and conducted independent risk of bias assessment and data extraction. Results After the selection process, 25 studies were included in the review. The strategies varied by the number and type of components and their intensity. No studies were identified as low risk of bias. Sixteen studies were identified as having a high risk of bias and thus untrustworthy. Nine studies were of considered to have an unclear risk of bias and some studies held back data they collected. The effects reported were inconsistent across the studies and the measures. Some of the better designed studies showed no improvement in measures of physical activity. Interventions which have an environmental change component seemed to be a promising direction. Those interventions which were primarily a mass media campaign were less likely to be successful. Conclusions Although numerous studies have been undertaken, there is considerable inconsistency in the findings of the available studies and this is confounded by serious methodological issues within the included studies. Simply combining interventions does not necessarily result in increased physical activity as many such studies, including some long term programs, failed to demonstrate efficacy. There is a clear need for well-designed studies and these studies should focus on the quality of measurement of physical activity. The review is currently being updated with newer studies.
Resumo:
Background Prevention of childhood obesity is a public health priority for Malaysia and many other countries. Physical activity for children is also decreasing at an alarming rate. Both conditions are associated with non-communicable diseases and with significant morbidity and mortality in later life. Systematic reviews of public health interventions provide a useful summary to inform public health practice by combining the results of a range of research studies on a specific intervention into a single report. Systematic reviews are deemed most valuable for health program development and evidence based practice. Unfortunately, many policy makers and practitioners are simply unaware of the evidence: which strategies which are most likely to provide benefit; and which strategies are known to be harmful or useless. This presentation provides a “birds eye” overview based upon recent (since 2007 to present) high quality systematic reviews of public health interventions. Method HealthEvidece.org and the Cochrane Library were searched for systematic reviews which evaluated interventions targeting obesity prevention and increasing physical activity for children. The findings of the included reviews were themed and summarized. Results Seven reviews were identified addressing obesity in the early years, and fifteen reviews addressing obesity more broadly in childhood. Additional reviews were identified aimed at increasing physical activity. The synthesis shows several strategies to be effective, however many popular strategies clearly are not. Several of the reviews were inconclusive due to an absence of robust primary studies. Amongst the findings, interventions undertaken in the school setting appear very promising. Conclusions There is significant evidence from systematic reviews to guide public health practice and policy, and to inform future research.
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (KM=0.014mM) and maximum rate (Vmax=11.2μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.
Resumo:
Background: Physical activity after breast cancer diagnosis is associated with improved survival. This study examines levels of and changes in physical activity following breast cancer diagnosis, overall and by race. Methods: The Carolina Breast Cancer Study, Phase III, assessed pre- and post-diagnosis physical activity levels in a cohort of 1,735 women, aged 20-74, diagnosed with invasive breast cancer between 2008 and 2011 in 44 counties of North Carolina. Logistic regression and analysis of variance were used to examine whether demographic, behavioral and clinical characteristics were associated with activity levels. Results: Only 35% of breast cancer survivors met current physical activity guidelines post-diagnosis. A decrease in activity following diagnosis was reported by 59% of patients, with the average study participant reducing their activity by 230 minutes (95% CI: 190, 270). Following adjustment for potential confounders, when compared to white women, African-American women were less likely to meet national physical activity guidelines post-diagnosis (odds ratio: 1.38, 95% CI: 1.01, 1.88), reported less weekly post-diagnosis physical activity (182 vs. 215 minutes; p=0.13), and reported higher average reductions in pre- versus post-diagnosis weekly activity (262 vs. 230 minutes; p-value = 0.13). Conclusion: Despite compelling evidence demonstrating the benefits of physical activity post-breast cancer, it is clear that more work needs to be done to promote physical activity in breast cancer patients, especially among African-American women.
Resumo:
Spontaneous play, important for forming the basis of friendships and peer relations, is a complex activity involving the management and production of talk-in-interaction. This paper focuses on the intricacies of social interaction, emphasising the link between alignment and affiliation, and the range and importance of verbal and nonverbal interactive devices available to children. Analysis of the way in which two girls, one of whom has been diagnosed with Asperger’s Syndrome, engage in spontaneous activities demonstrates the potential for interactional difficulty due to the unscripted nature of the interaction. The paper argues for further research into how improvised, unscripted interactions are initiated within moment-by-moment talk, how they unfold, and how they are brought to a close in everyday contexts in order to understand how children create their social worlds.
Resumo:
Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus x domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach.
Resumo:
Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
Resumo:
Purpose The purpose of this study was to evaluate age and gender differences in objectively measured physical activity (PA) in a population-based sample of students in grades 1–12. Methods Participants (185 male, 190 female) wore a CSA 7164 accelerometer for 7 consecutive days. To examine age-related trends, students were grouped as follows: grades 1–3 (N = 90), grades 4–6 (N = 91), grades 7–9 (N = 96), and grades 10–12 (N = 92). Bouts of PA and minutes spent in moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) were examined. Results Daily MVPA and VPA exhibited a significant inverse relationship with grade level, with the largest differences occurring between grades 1–3 and 4–6. Boys were more active than girls; however, for overall PA, the magnitudes of the gender differences were modest. Participation in continuous 20-min bouts of PA was low to nonexistent. Conclusion Our results support the notion that PA declines rapidly during childhood and adolescence and that accelerometers are feasible alternatives to self-report methods in moderately sized population-level surveillance studies.
Resumo:
Purpose The purpose of this review is to address important methodological issues related to conducting accelerometer-based assessments of physical activity in free-living individuals. Methods We review the extant scientific literature for empirical information related to the following issues: product selection, number of accelerometers needed, placement of accelerometers, epoch length, and days of monitoring required to estimate habitual physical activity. We also discuss the various options related to distributing and collecting monitors and strategies to enhance compliance with the monitoring protocol. Results No definitive evidence exists currently to indicate that one make and model of accelerometer is more valid and reliable than another. Selection of accelerometer therefore remains primarily an issue of practicality, technical support, and comparability with other studies. Studies employing multiple accelerometers to estimate energy expenditure report only marginal improvements in explanatory power. Accelerometers are best placed on hip or the lower back. Although the issue of epoch length has not been studied in adults, the use of count cut points based on 1-min time intervals maybe inappropriate in children and may result in underestimation of physical activity. Among adults, 3–5 d of monitoring is required to reliably estimate habitual physical activity. Among children and adolescents, the number of monitoring days required ranges from 4 to 9 d, making it difficult to draw a definitive conclusion for this population. Face-to-face distribution and collection of accelerometers is probably the best option in field-based research, but delivery and return by express carrier or registered mail is a viable option. Conclusion Accelerometer-based activity assessments requires careful planning and the use of appropriate strategies to increase compliance.
Resumo:
Purpose To review and update the evidence relating to the personal, social, and environmental factors associated with physical activity (PA) in adults. Methods Systematic review of the peer-reviewed literature to identify papers published between 1998 and 2000 with PA (and including exercise and exercise adherence). Qualitative reports or case studies were not included. Results Thirty-eight new studies were located. Most confirmed the existence of factors already known to be correlates of PA. Changes in status were noted in relation to the influence of marital status, obesity, smoking, lack of time, past exercise behavior, and eight environmental variables. New studies were located which focused on previously understudied population groups such as minorities, middle and older aged adults, and the disabled. Conclusion The newly reported studies tend to take a broader “ecological” approach to understanding the correlates of PA and are more focused on environmental factors. There remains a need to better understand environmental influences and the factors that influence different types of PA. As most of the work in this field still relies on cross-sectional studies, longitudinal and intervention studies will be required if causal relationships are to be inferred.
Resumo:
Objective To test a conceptual model linking parental physical activity orientations, parental support for physical activity, and children's self-efficacy perceptions with physical activity participation. Participants and setting The sample consisted of 380 students in grades 7 through 12 (mean age, 14.0±1.6 years) and their parents. Data collection took place during the fall of 1996. Main outcome measures Parents completed a questionnaire assessing their physical activity habits, enjoyment of physical activity, beliefs regarding the importance of physical activity, and supportive behaviors for their child's physical activity. Students completed a 46-item inventory assessing physical activity during the previous 7 days and a 5-item physical activity self-efficacy scale. The model was tested via observed variable path analysis using structural equation modeling techniques (AMOS 4.0). Results An initial model, in which parent physical activity orientations predicted child physical activity via parental support and child self-efficacy, did not provide an acceptable fit to the data. Inclusion of a direct path from parental support to child physical activity and deletion of a nonsignificant path from parental physical activity to child physical activity significantly improved model fit. Standardized path coefficients for the revised model ranged from 0.17 to 0.24, and all were significant at the p<0.0001 level. Conclusions Parental support was an important correlate of youth physical activity, acting directly or indirectly through its influence on self-efficacy. Physical activity interventions targeted at youth should include and evaluate the efficacy of individual-level and community-level strategies to increase parents’ capacity to provide instrumental and motivational support for their children's physical activity.
Resumo:
Objectives To review the effects of physical activity on health and behavior outcomes and develop evidence-based recommendations for physical activity in youth. Study design A systematic literature review identified 850 articles; additional papers were identified by the expert panelists. Articles in the identified outcome areas were reviewed, evaluated and summarized by an expert panelist. The strength of the evidence, conclusions, key issues, and gaps in the evidence were abstracted in a standardized format and presented and discussed by panelists and organizational representatives. Results Most intervention studies used supervised programs of moderate to vigorous physical activity of 30 to 45 minutes duration 3 to 5 days per week. The panel believed that a greater amount of physical activity would be necessary to achieve similar beneficial effects on health and behavioral outcomes in ordinary daily circumstances (typically intermittent and unsupervised activity). Conclusion School-age youth should participate daily in 60 minutes or more of moderate to vigorous physical activity that is developmentally appropriate, enjoyable, and involves a variety of activities.
Resumo:
Objectives Obesity rates are increasing among children of all ages, and reduced physical activity is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-aged children or about the influence of preschool attendance on physical activity. The purpose of this study was to describe the physical activity levels of children while they attend preschools, to identify the demographic factors that might be associated with physical activity among those children, and to determine the extent to which children's physical activity varies among preschools. Methods A total of 281 children from 9 preschools wore an Actigraph (Fort Walton Beach, FL) accelerometer for an average of 4.4 hours per day for an average of 6.6 days. Each child's height and weight were measured, and parents of participating children provided demographic and education data. Results The preschool that a child attended was a significant predictor of vigorous physical activity (VPA) and moderate-to-vigorous physical activity (MVPA). Boys participated in significantly more MVPA and VPA than did girls, and black children participated in more VPA than did white children. Age was not a significant predictor of MVPA or VPA. Conclusions Children's physical activity levels were highly variable among preschools, which suggests that preschool policies and practices have an important influence on the overall activity levels of the children the preschools serve.
Resumo:
OBJECTIVE To compare the physical activity (PA) patterns and the hypothesized psychosocial and environmental determinants of PA in an ethnically diverse sample of obese and non-obese middle school children. DESIGN Cross-sectional study. SUBJECTS One-hundred and thirty-three non-obese and 54 obese sixth grade children (mean age of 11.4 +/-0.6). Obesity status determined using the age-, race- and gender-specific 95th percentile for BMI from NHANES-1. MEASUREMENTS Objective measurements were collected of PA over a 7-day period using the CSA 7164 accelerometer: total daily counts; daily moderate (3-5.9 METs) physical activity (MPA); daily vigorous physical activity (greater than or equal to 6 METs; VPA); and weekly number of 5, 10 and 20 min bouts of moderate-to-vigorous physical activity (greater than or equal to 3 METs, MVPA). Self-report measures were collected of PA self-efficacy; social influences regarding PA, beliefs about PA outcomes; perceived PA levels of parents and peers, access to sporting and/or fitness equipment at home, involvement in community-based PA organizations; participation in community sports teams; and hours spent watching television or playing video games. RESULTS Compared to their non-obese counterparts, obese children exhibited significantly lower daily accumulations of total counts, MPA and VPA as well as significantly fewer 5, 10 and 20 min bouts of MVPA. Obese children reported significantly lower levels of PA self-efficacy, were involved in significantly fewer community organizations promoting PA and were significantly less likely to report their father or male guardian as physically active. CONCLUSIONS The results are consistent with the hypothesis that physical inactivity is an important contributing factor in the maintenance of childhood obesity. Interventions to promote PA in obese children should endeavor to boost self-efficacy perceptions regarding exercise, increase awareness of, and access to, community PA outlets, and increase parental modeling of PA.