976 resultados para experimental physical chemistry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Chemistry (Physical Chemistry) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de mestre em Engenharia de Materiais

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aus: Physical chemistry, chemical physics, Vol. 16.2014, H. 47, S. 26279 - 26287

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increase of total choline in tumors has become an important biomarker in cancer diagnosis. Choline and choline metabolites can be measured in vivo and in vitro using multinuclear MRS. Recent in vivo(13)C MRS studies using labeled substrates enhanced via dynamic nuclear polarization demonstrated the tremendous potential of hyperpolarization for real-time metabolic studies. The present study demonstrates the feasibility of detecting hyperpolarized (15)N labeled choline in vivo in a rat head at 9.4 T. We furthermore report the in vitro (172 +/- 16 s) and in vivo (126 +/- 15 s) longitudinal relaxation times. We conclude that with appropriate infusion protocols it is feasible to detect hyperpolarized (15)N labeled choline in live animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L=1) and quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density approximation of density-functional theory. We predict the existence of low-energy spin modes of surface type, which are identified from the strength function. Their collectivity and evolution with size are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distortions in a family of conjugated polymers are studied using two complementary approaches: within a many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.