975 resultados para conjugate meningococcal vaccines
Resumo:
Enterotoxemia in sheep and in goats is caused by the effects of the epsilon toxin of C/ostridium perfringens type D, being considered the main infectious cause of mortality in those animal species. The main prophylactic measures include adequate nutritional management and vaccination of ali animais using vaccines of high immunogenic power. Six commercial vaccines containing in its formulation the epsilon toxoid of C. perfringens type D were sorogically evaluated. Eighty four female goat kids, whose mothers had no previous vaccination history against clostridioses were used. They were divided into six groups of 14 animais each. The animais of the control group didn't receive any vaccine dose and the animais from the groups 1 to 5 received two vaccine doses, The first vaccine dose was applied at 45 days of life (day zero) and the second dose at 75 days (30 days after the first dose). Blood samples were collected from the goat kids at the days zero, 30, 60, 90, 120 and 150 after the beginning of the experiment, in order to evaluate the immunologic response. The Indirect ELlSA technique was used for the quantification of the antibodies against epsilon toxin in the samples of blood serum of the animais. In day zero, no animal presented titre considered protector. The largest number of animais considered protected was found at day 60, in response to the two initial doses of the vaccine (days O and 30, first and second doses, respectively). Only tive animaIs which received the vaccine 1 and one animal which received the vaccine 3 stayed wilh titres of antibodies considered up to 150 days after the first vaccine dose. Based on the results, it was concluded lhat the evaluated vaccines showed small amount of epsilon toxoid in the commercial formulations, a crucial fact for lhe low efficiency of. the vaccines. For commercial reasons, the vaccines against the clostridioses present versatile formulations, with several toxoid types, used for various animal species, which certainly contributed to reduce their effectiveness in preventing the iIInesses caused by the clostridia or their toxins.
Resumo:
The conjugate gradient is the most popular optimization method for solving large systems of linear equations. In a system identification problem, for example, where very large impulse response is involved, it is necessary to apply a particular strategy which diminishes the delay, while improving the convergence time. In this paper we propose a new scheme which combines frequency-domain adaptive filtering with a conjugate gradient technique in order to solve a high order multichannel adaptive filter, while being delayless and guaranteeing a very short convergence time.
Resumo:
In the Region of Madrid, universal immunization with the 13-serotypes pneumococcal conjugate vaccine (PCV13) started in May 2010. In July 2012, public funding ceased. Vaccination coverage decreased from >95% to 82% in 2013 and to 67% in 2014. Our aim was to investigate the impact of PCV13 withdrawal from Madrid Region's universal immunization program on the incidence of complicated pneumococcal bacteremia. We performed a multi-center retrospective cohort study, from 2009 to 2014. Participants were children aged <14 years with Streptococcus pneumoniae bacteremia. Complications were defined as any condition requiring intensive care or surgery. Sequelae were conditions lasting ≥90 days. A total of 168 patients were recruited. One-fourth of both immunized and non-immunized patients had complications. Global complications increased after PCV13 withdrawal. A total of 28% of PCV13 serotypes presented complications. Complications due to PCV13 serotypes did not increase after July 2012. No-PCV13 serotypes increased progressively from 2009 on, and 23% presented complications. A significant risk of complications was found for patients with meningitis, empyema, C-reactive protein >100 mg/L, and serotype 1. A multivariate analysis indicated that complications were associated with meningitis and hospital admission after July 2012. Sequelae were significantly associated with children <2 years of age, meningitis and no-PCV13 serotypes. The incidence of complications due to PCV13 serotypes did not increase two years after PCV13 withdrawal. Nevertheless, all-serotypes complications increased. The likely cause was that no-PCV13 serotypes (associated with meningitis) are on the rise.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
Colibacillosis is a rather important economic problem for poultry production, associated to Avian Pathogenic Escherichia coli (APEC) strains, which may cause several extraintestinal pathologies, such as airsacculitis and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders, leading to septicemic mortality. Control of morbidity and mortality in the outbrakes of colibacillosis may be performed with antibiotics and/or by vaccination. The use antibiotics is frequently inef - fective as Escherichia coli ( E. coli ) is considered the largest reservoir of antimicrobial resistance, characteristic that may even transmit to other bacteria, turning the situation into a serious problem of public health. Vaccination may be the alternative solution but as many different strains arise, flock-specific autovaccines seem to be needed under several possible protocols, with live attenuated and/or inactivated vaccines from different strains that should be identified and characterized according to their virulence factors, within different flocks.
Resumo:
Antigen design is generally driven by the need to obtain enhanced stability,efficiency and safety in vaccines.Unfortunately,the antigen modification is rarely proceeded in parallel with analytical tools development characterization.The analytical tools set up is required during steps of vaccine manufacturing pipeline,for vaccine production modifications,improvements or regulatory requirements.Despite the relevance of bioconjugate vaccines,robust and consistent analytical tools to evaluate the extent of carrier glycosylation are missing.Bioconjugation is a glycoengineering technology aimed to produce N-glycoprotein in vivo in E.coli cells,based on the PglB-dependent system by C. jejuni,applied for production of several glycoconjugate vaccines.This applicability is due to glycocompetent E. coli ability to produce site-selective glycosylated protein used,after few purification steps, as vaccines able to elicit both humoral and cell-mediate immune-response.Here, S.aureus Hla bioconjugated with CP5 was used to perform rational analytical-driven design of the glycosylation sites for the glycosylation extent quantification by Mass Spectrometry.The aim of the study was to develop a MS-based approach to quantify the glycosylation extent for in-process monitoring of bioconjugate production and for final product characterization.The three designed consensus sequences differ for a single amino-acid residue and fulfill the prerequisites for engineered bioconjugate more appropriate from an analytical perspective.We aimed to achieve an optimal MS detectability of the peptide carrying the consensus sequences,complying with the well-characterized requirements for N-glycosylation by PglB.Hla carrier isoforms,bearing these consensus sequences allowed a recovery of about 20 ng/μg of periplasmic protein glycosylated at 40%.The SRM-MS here developed was successfully applied to evaluate the differential site occupancy when carrier protein present two glycosites.The glycosylation extent in each glycosite was determined and the difference in the isoforms were influenced either by the overall source of protein produced and by the position of glycosite insertion.The analytical driven design of the bioconjugated antigen and the development of accurate,precise and robust analytical method allowed to finely characterize the vaccine.
Resumo:
Neisseria meningitidis serogroup B is the major etiological agent of meningitis and life-threatening sepsis, against which two vaccines are licensed. The 4CMenB vaccine is composed of three major protein antigens (fHbp, NHBA and NadA) and detergent-extracted outer membrane vesicles (DOMV) from the NZ98/254 strain. DOMV are safe, immunogenic and able to raise bactericidal antibodies, mainly attributed to the immunodominant PorA protein. Nevertheless, DOMV offer a complex reservoir of potentially immunogenic proteins, whose relative contribution in protection is still poorly characterized. By testing antisera from vaccinated infants in serum bactericidal assay, we observed that the addition of DOMV in the vaccine formulation enhanced breadth of coverage compared to recombinant proteins alone against a panel of 11 meningococcal strains mismatched for the vaccine antigens. To unravel the DOMV components involved in such protection, 30 DOMV antigens were cloned and expressed in Escherichia coli as recombinant proteins and/or in vesicles to maintain their native conformation. Samples obtained were both included in tailor-made protein-microarrays to immunoprofile the antibody repertoire raised by DOMV-containing formulations and were individually used for mouse immunization studies to assess their ability to induce bactericidal antibodies. The protein-array immunosignature of mouse DOMV/4CMenB antisera unveiled a subset of 8 DOMV-reactive proteins potentially responsible for the additional protective responses. The antisera derived from mouse immunizations showed high levels of antibodies and recognized the corresponding antigen across different meningococcal strains. Among the protein-array reactive antigens, OpcA, NspA and PorB induced antibodies able to kill 10 of the 11 genetically diverse meningococcal strains and the specificity of the protective role of OpcA and PorB was also confirmed in 4CMenB infant vaccinee sera. In conclusion, we identified additional PorA-independent antigens within DOMV involved in broadening the coverage of 4CMenB, thus supporting the key role played by vesicles in this multivalent formulation.
Resumo:
Neisseria meningitidis is a gram negative human obligated pathogen, mostly found as a commensal in the oropharyngeal mucosa of healthy individuals. It can invade this epithelium determining rare but devastating and fast progressing outcomes, such as meningococcal meningitidis and septicemia, leading to death (about 135000 per year worldwide). Conjugated vaccines for serogroups A, C, W135, X and Y were developed, while for N. meningitidis serogroup B (MenB) the vaccines were based on Outern Membrane Vesicles (OMV). One of them is the 4C-MenB (Bexsero). The antigens included in this vaccine’s formulation are, in addition to the OMV from New Zeland epidemic strain 98/254, three recombinant proteins: NadA, NHBA and fHbp. While the role of these recombinant components was deeply characterized, the vesicular contribution in 4C-MenB elicited protection is mediated mainly by porin A and other unidentified antigens. To unravel the relative contribution of these different antigens in eliciting protective antibody responses, we isolated human monoclonal antibodies (mAbs) from single-cell sorted plasmablasts of 3 adult vaccinees peripheral blood. mAbs have been screened for binding to 4C-MenB components by Luminex bead-based assay. OMV-specific mAbs were purified and tested for functionality by serum bactericidal assay (SBA) on 18 different MenB strains and characterized in a protein microarray containing a panel of prioritized meningococcal proteins. The bactericidal mAbs identified to recognize the outer membrane proteins PorA and PorB, stating the importance of PorB in cross-strain protection. In addition, RmpM, BamE, Hyp1065 and ComL were found as immunogenic components of the 4C-MenB vaccine.
Resumo:
Background: The treatment of B-cell acute lymphoblastic leukemia (B-ALL) has been enriched by novel agents targeting surface markers CD19 and CD22. Inotuzumab ozogamicin (INO) is a CD22-calicheamicin conjugated monoclonal antibody approved in the setting of relapse/refractory (R/R) B-ALL able to induce a high rate of deep responses, not durable over time. Aims: This study aims to identify predictive biomarkers to INO treatment in B- ALL by flow cytometric analysis of CD22 expression and gene expression profile. Materials and methods: Firstly, the impact on patient outcome in 30 R/R B-ALL patients of baseline CD22 expression in terms of CD22 blast percentage and CD22 fluorescent intensity (CD22-FI) was explored. Secondly, baseline gene expression profile of 18 R/R B-ALL patient samples was analyzed. For statistical analysis of differentially expressed genes (DEGs) patients were divided in non-responders (NR), defined as either INO-refractory or with duration of response (DoR) < 3 months, and responders (R). Gene expression results were analyzed with Ingenuity pathway analysis (IPA). Results: In our patient set higher CD22-FI, defined as higher quartiles (Q2-Q4), correlated with better patient outcome in terms of CR rate, OS and DoR, compared to lower CD22-FI (Q1). CD22 blast percentage was less able to discriminate patients’ outcome, although a trend for better outcome in patients with CD22 ≥ 90% could be appreciated. Concerning gene expression profile, 32 genes with corrected p value <0.05 and absolute FC ≥2 were differentially expressed in NR as compared to R. IPA upstream regulator and regulator effect analysis individuated the inhibition of tumor suppressor HIPK2 as causal upstream condition of the downregulation of 6 DEGs. Conclusions: CD22-FI integrates CD22-percentage on leukemic blasts for a more comprehensive target pre-treatment evaluation. Moreover, a unique pattern of gene expression signature based on HIPK2 downregulation was identified, providing important insights in mechanisms of resistance to INO.
Resumo:
The perspectives for a Chagas Disease vaccine 30 years ago and today are compared. Antigens and adjuvants have improved, but logistic problems remain the same. Sterilizing vaccines have not been produced and animal models for chronic Chagas have not been developed. Vector control has been successful and Chagas incidence has come to a halt. We do not have a population candidate to vaccination now in Brazil. And if we had, we would not know how to evaluate the success of vaccination in a short time period. A vaccine may not seem important at the moment. However, scientific reasons and incertitudes about the future recommend that a search for a vaccine be continued.
Resumo:
No effective vaccine or immunotherapy is presently available for patients with the hemolytic uremic syndrome (HUS) induced by Shiga-like toxin (Stx) producedbyenterohaemorragic Escherichia coli (EHEC) strains, such as those belonging to the O157:H7 serotype. In this work we evaluated the performance of Bacillus subtilis strains, a harmless spore former gram-positive bacterium species, as a vaccine vehicle for the expression of Stx2B subunit (Stx2B). A recombinant B. subtilis vaccine strain expressing Stx2B under the control of a stress inducible promoter was delivered to BALB/c mice via oral, nasal or subcutaneous routes using both vegetative cells and spores. Mice immunized with vegetative cells by the oral route developed low but specific anti-Stx2B serum IgG and fecal IgA responses while mice immunized with recombinant spores developed anti-Stx2B responses only after administration via the parenteral route. Nonetheless, serum anti-Stx2B antibodies raised in mice immunized with the recombinant B. subtilis strain did not inhibit the toxic effects of the native toxin, both under in vitro and in vivo conditions, suggesting that either the quantity or the quality of the induced immune response did not support an effective neutralization of Stx2 produced by EHEC strains.
Resumo:
O objetivo da revisão foi analisar aspectos conceituais e operacionais de sistemas de vigilância de eventos adversos pós-vacina. Foram incluídos artigos disponíveis em formato eletrônico, publicados entre 1985 e 2009, selecionados nas bases Medline/PubMed, com as palavras-chave: "adverse events following vaccine", "adverse events following vaccine surveillance", "post-marketing surveillance" e "safety vaccine" e "Phase IV clinical trials", e excluídos aqueles com foco em tipos específicos desses eventos. Foram apontados os principais aspectos que justificam a importância dos eventos adversos pós-vacina em saúde pública, os instrumentos que garantem a segurança das vacinas e as finalidades, atributos, tipos, interpretações de dados, limitações e novos desafios da vigilância de eventos adversos pós-vacina, bem como estratégias para aumentar sua sensibilidade. A revisão é concluída com desafios para os próximos anos, visando à segurança e confiabilidade dos programas de vacinação.
Resumo:
OBJETIVO: Avaliar o programa de imunização de crianças de 12 e de 24 meses de idade, com base no registro informatizado de imunização. MÉTODOS: Estudo descritivo em amostra probabilística de 2.637 crianças nascidas em 2002 e residentes em Curitiba, PR. As fontes de dados foram: registro informatizado de imunização do município, Sistema de Informação de Nascidos Vivos e inquérito domiciliar para casos com registro incompleto. As coberturas foram estimadas aos 12 e aos 24 meses de vida e analisadas segundo características socioeconômicas de cada distrito sanitário e o vínculo das crianças aos serviços de saúde. Foram analisadas a abrangência, completude e duplicidades do registro informatizado de imunização. RESULTADOS: A cobertura do esquema de imunização foi de 95,3% aos 12 meses sem diferenças entre os distritos e de 90,3% aos 24 meses, tendo sido mais elevada em um distrito com piores indicadores socioeconômicos (p = 0,01). A proporção de vacinas, segundo o tipo, aplicadas antes e após a idade recomendada foi de até 0,9% e até 32,2%, respectivamente. A cobertura do registro informatizado de imunização foi de 98% na amostra estudada, o sub-registro de doses de vacinas foi de 11% e a duplicidade de registro foi de 20,6%. Os grupos que apresentaram maiores coberturas foram: crianças com cadastro definitivo, aquelas com três ou mais consultas pelo Sistema Único de Saúde e as atendidas em Unidades Básicas de Saúde que adotam plenamente a Estratégia de Saúde da Família. CONCLUSÕES: A cobertura vacinal em Curitiba mostrou-se elevada e homogênea entre os distritos, e o vínculo com os serviços de saúde foi fator importante para tais resultados. O registro informatizado de imunização mostrou-se útil no monitoramento da cobertura vacinal; no entanto, é importante a prévia avaliação do seu custo-efetividade para que seja amplamente utilizado pelo Programa Nacional de Imunização.
Resumo:
OBJETIVO: Desenvolver método para planejamento e avaliação de campanhas de vacinação contra a raiva animal. MÉTODOS: O desenvolvimento da metodologia baseou-se em sistemas de informação geográfica para estimar a população e a densidade animal (canina e felina) por setores censitários e subprefeituras do município de São Paulo, em 2002. O número de postos de vacinação foi estimado para atingir uma dada cobertura vacinal. Foram utilizadas uma base de dados censitários para a população humana, e estimativas para razões cão:habitante e gato:habitante. RESULTADOS: Os números estimados foram de 1.490.500 cães e 226.954 gatos em São Paulo, uma densidade populacional de 1.138,14 animais domiciliados por km². Foram vacinados, na campanha de 2002, 926.462 animais, garantindo uma cobertura vacinal de 54%. O número total estimado de postos no município para atingir uma cobertura vacinal de 70%, vacinando em média 700 animais por posto foi de 1.729. Estas estimativas foram apresentadas em mapas de densidade animal, segundo setores censitários e subprefeituras. CONCLUSÕES: A metodologia desenvolvida pode ser aplicada de forma sistemática no planejamento e no acompanhamento das campanhas de vacinação contra a raiva, permitindo que sejam identificadas áreas de cobertura vacinal crítica.
Resumo:
Chelonia mydas is a sea turtle that feeds and nests on the Brazilian coast and a disease called fibropapillomatosis is a threat to this species. Because of this, it is extremely necessary to determine a methodology that would enable the analysis of blood leukocyte function in these sea turtles. In order to achieve this aim, blood samples were collected from C. mydas with or without fibropapillomas captured on the São Paulo north coast. Blood samples were placed in tubes containing sodium heparin and were transported under refrigeration to the laboratory in sterile RPMI 1640 cell culture medium. Leukocytes were separated by density gradient using Ficoll-PaqueTM Plus, Amershan Biociences®. The following stimuli were applied in the assessment of leukocyte function: Phorbol Miristate-Acetate (PMA) for oxidative burst activity evaluation and Zymosan A (Saccharomyces cerevisiae) Bio Particles®, Alexa Fluor® 594 conjugate for phagocytosis evaluation. Three cell populations were identified: heterophils, monocytes and lymphocytes. Monocytes were the cells responsible for phagocytosis and oxidative burst.