982 resultados para chemical solution method
Resumo:
Polycrystalline Ba0.5Sr0.5(Ti0.80Sn0.20)O-3 (BST:Sn) thin films with a perovskite structure were prepared by the soft chemical method on a platinum-coated silicon substrate from spin-coating technique. The resulting thin films showed a dense structure with uniform grain size distribution. The dielectric constant of the films estimated from C-V curve is around 1134 and can be ascribed to a reduction in the oxygen vacancy concentration. The ferroelectric nature of the film indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed remnant polarization of 14 mu C/cm(2) and coercive field of 74 kV/cm at frequency of 1 MHz. At the same frequency, the leakage current density at 1.0 V is equal to 1.5 x 10(-7) A/cm(2). This work clearly reveals the highly promising potential of BST:Sn for application in memory devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO(2) thin-film electrode biased at current density from 5 to 50 mA cm(-2) and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L(-1), pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L(-1) at a pH of 4 and a current density of 30 mA cm(-2). The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N=3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L(-1) NaCl and 50 mu g L(-1) of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of -0.260 min(-1), suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.
Resumo:
Ferroelectric CaBi4Ti4O15 (CBTi144) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present a single phase of layered-structured perovskite with polar axis orientation after annealing at 700 degrees C for 2 h in static air and oxygen atmosphere. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. It is noted that the films annealed in static air showed good polarization fatigue characteristics at least up to 10(10) bipolar pulse cycles and excellent retention properties up to 10(4) s. on the other hand, oxygen atmosphere seems to be crucial in the decrease of both, fatigue and retention characteristics of the capacitors. Independently of the applied electric field, the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lanthanum-doped Bi4Ti3O12 thin films (BLT) were deposited on Pt/Ti/SiO2/Si substrates using a polymeric precursor solution. The spin-coated films were specular, crack-free and crystalline after annealing at 700 degrees C for 2 h. Crystallinity and morphological evaluation were examined by X ray diffraction (YRD) and atomic force microscopy (AFM). The stability of the formed complex is of extreme importance for the formation of the perovskite phase. Films obtained from acid pH solution present elongated grains around 200 ran in size, whereas films obtained from basic solution present a dense microstructure with spherical grains (100 nm). The dielectric and ferroelectric properties of the BLT films are strongly affected by the solution pH. The hysteresis loops are fully saturated with a remnant polarization and coercive voltage of P-r=20.2 mu C/cm(2) and V-c = 1.35 V and P-r= 15 mu C/cm(2) and V-c = 1.69 V for the films obtained from basic and acid solutions, respectively. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
SnO2:Sb multi-layer coatings were prepared by the Pechini method. An investigation was made of the influence of the concentration of Sb2O3 and the viscosity of the precursor solution on the electrical and optical properties of SnO2 thin films. The use of a multi-layer system as an alternative form of increasing the packing and. thus. decreasing porosity proved to be efficient, decreasing the system's resistivity without altering its optical properties. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
The effect of the Sb addition on the microstructural and electrical conductivity of the SnO2 thin film was studied in this work. Experimental results show that the Sb addition allowed to control the grain size and electrical conductivity of the SnO2 thin film, resulting in a nanostructured material. The nanostructured Sb-doped SnO2 thin films present high electrical conductivity, even in the presence of high porosity, supporting the hypothesis that nanostructured material must possess strong electrical conductivity. This work involves important aspects that can be applied to the development of high performance transparent conducting thin film. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Nanosized and highly reactive magnesium mobate (MgNb2O6) powders were successfully synthesized by a new wet-chemical method by means of the dissolution of Nb2O5 center dot 5H(2)O and in a solution of oxalic acid followed by the addition of stoichiometric amounts of magnesium carbonate. The Nb-Mg-oxalic acid solution was evaporated resulting in a dry and amorphous powder that was calcined in the temperature range from 200 to 900 degrees C for 2 h. The crystallization process from the amorphous state to the crystalline MgNb2O6 was followed by thermal analysis. The calcined powders characterized by FT-Raman spectroscopy, X-ray diffraction (XRD) and their morphology examined by high resolution scanning electron microscopy (HR-SEM). Pure MgNb2O6, free from the second phases and obtained at 800 degrees C was confirmed by a combined analysis using XRD and FT-Raman. The average diameter of the particles was calculated from the HR-SEM image as 70 urn approximately. This technique allows a better mixing of the constituent elements and thus a better reactivity of the mixture to obtain pre-reaction products with high purity at lower temperatures and reducing cost. It can offer a great advantage in the PMN-PT formation with respect to the solid-state synthesis. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents a new algorithm for optimal power flow problem. The algorithm is based on Newton's method which it works with an Augmented Lagrangian function associated with the original problem. The function aggregates all the equality and inequality constraints and is solved using the modified-Newton method. The test results have shown the effectiveness of the approach using the IEEE 30 and 638 bus systems.
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Antimony doped tin oxide thin films were deposited on glass by a chemical route derived from Pechini method. Particular emphasis was given to the microstructure of crystallized films. Crystalline phase formation was studied by grazing incident X-ray diffraction and by thermal analyses. Scanning electron microscopy was carried out for microstructure characterization, surface roughness was observed using scanning tunneling microscope and the optical transmittance measurements were performed in the wavelength range of 200-800 nm. (C) 2002 Kluwer Academic Publishers.
Resumo:
We report a study of residual stress in PbTiO3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented.
Resumo:
An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10(10) after some 8-10 iterations.