909 resultados para Uninterruptible power supply


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Saúde Coletiva - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the availability and use of audiovisual and electronic resources by distance learning students at the National Open University of Nigeria (NOUN). A questionnaire was administered tothe distance learning students selected across the various departments of the NOUN. The findings revealed that even though NOUN made provision for audiovisual and electronic resources for students' use, a majority of the audiovisual and electronic resources are available through personal provision by the students.The study also revealed regular use of audiovisual and electronic resources by the distance learning students. Constraints on use include poor power supply, poor infrastructure, lack of adequate skill, and high cost of access.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Saúde Coletiva - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied free surface oscillations of a fluid in a cylinder tank excited by an electric motor with limited power supply. We investigated the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Numerical experiments are carried out to present the existence of several types of regular and chaotic attractors. For the first time powers (power of the motor, power consumed by the damping force under fluid free surface oscillations, and a total power) are calculated, investigated, and shown for different regimes, regular and chaotic ones for parametric resonance interactions. [DOI: 10.1115/1.4005844]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new Ultra Wide Band (UWB) Timed- Array Transmitter System with Beamforming capability for high-resolution remote acquisition of vital signals. The system consists of four identical channels, where each is formed of a serial topology with three modules: programmable delay circuit (PDC or τ), a novel UWB 5th Gaussian Derivative order pulse generator circuit (PG), and a planar Vivaldi antenna. The circuit was designed using 0.18μm CMOS standard process and the planar antenna array was designed with filmconductor on Rogers RO3206 substrate. Spice simulations results showed the pulse generation with 104 mVpp amplitude and 500 ps width. The power consumption is 543 μW, and energy consumption 0.27 pJ per pulse using a 2V power supply at a pulse repetition rate (PRR) of 100 MHz. Electromagnetic simulations results, using CST Microwave (MW) Studio 2011, showed the main lobe radiation with a gain maximum of 13.2 dB, 35.5º x 36.7º angular width, and a beam steering between 17º and -11º for azimuthal (θ) angles and 17º and -18º for elevation (φ) angles at the center frequency of 6 GHz

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesi tratta del progetto e della realizzazione di un riferimento in tensione simmetrico e stabile in temperatura, realizzato in tecnologia CMOS. Nella progettazione analogica ad alta precisione ha assunto sempre più importanza il problema della realizzazione di riferimenti in tensione stabili in temperatura. Nella maggior parte dei casi vengono presentati Bandgap, ovvero riferimenti in tensione che sfruttano l'andamento in temperatura dell'energy gap del silicio al fine di ottenere una tensione costante in un ampio range di temperatura. Tale architettura risulta utile nei sistemi ad alimentazione singola compresa fra 0 e Vdd essendo in grado di generare una singola tensione di riferimento del valore tipico di 1.2V. Nella tesi viene presentato un riferimento in tensione in grado di offrire le stesse prestazioni di un Bandgap per quanto riguarda la variazione in temperatura ma in grado di lavorare sia in sistemi ad alimentazione singola che ad alimentazione duale. Il circuito proposto e' in grado di generare due tensioni, simmetriche rispetto a un riferimento dato, del valore nominale di ±450mV. All'interno della tesi viene descritto il progetto di due diverse architetture, entrambe in grado di generare le tensioni con le specifiche richieste. Le due architetture sono poi state confrontate analizzando in particolare la stabilità in temperatura, la potenza dissipata, il PSRR (Power Supply Rejection Ratio) e la simmetria delle tensioni generate. Al termine dell'analisi è stato poi implementato su silicio il circuito che garantiva le prestazioni migliori. In sede di disegno del layout su silicio sono stati affrontati i problemi derivanti dall'adattamento dei componenti al fine di ottenere una maggiore insensibilità del circuito stesso alle incertezze legate al processo di realizzazione. Infine sono state effettuate le misurazioni attraverso una probe station a 4 sonde per verificare il corretto funzionamento del circuito e le sue prestazioni.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Produktion eines spinpolarisierten Strahls mit hohem mittleren Strom ist sowohl für den Betrieb von existierenden polarisierten Quellen als auch in noch stärkerem Maße für geplante zukünftige Projekte wichtig. Die Betriebszeit solcher Quellen wird durch die Abnahme der Quantenausbeute der Photokathode mit der Zeit begrenzt. Die Problematik der Abnahme der Quantenausbeute konnte durch die Reaktion der Kathodenoberfläche mit sauerstoffhaltigen Molekülen sowie durch Ionenbombardement geklärt werden. Im Laufe dieser Arbeit wurden, teilweise zum ersten Mal, Mechanismen untersucht, die zur Entstehung der chemisch aktiven Moleküle und der Ionen beitragen und weitere Effekte, die die Betriebszeit der polarisierten Quellen reduzieren. Die Experimente wurden an einer genauen Kopie der an MAMI vorhandenen polarisierten Quelle durchgeführt. Es wurde demonstriert, dass Erwärmung der Photokathode, Ioneneinfang und Strahlverlust aufgrund der Raumladungskräfte die Kathodenlebensdauer begrenzen können. Der erste Effekt ist Erwärmung der Photokathode. Die Laserleistung wird fast vollständig in Wärmeleistung umgesetzt, was zur Absenkung der Verfügbarkeit der polarisierten Quellen führen kann, und zwar unabhängig davon, ob der Photostrom produziert wird oder nicht. Der zweite Effekt ist Ionenbombardement mit den sowohl in der Beschleunigungsstrecke als auch in der Strahlführung entstehenden Ionen. Es wurde demonstriert, dass der in der Strahlführung entstehende Ionenstrom sogar größer ist als der in der Kanone. Unter bestimmten Bedingungen können die gebildeten Ionen durch das Potenzial des Elektronenstrahls eingefangen werden und die Kanone erreichen und damit zusätzlich zur Zerstörung der negativen Elektronenaffinität beitragen. Der dritte Effekt ist Strahlverlust. Es wurde demonstriert, dass die relativen Strahlverluste kleiner als 1*10-6 sein sollten, um eine Lebensdauer von mehr als 1000 Stunden beim Strom von 100 A zu erreichen, was für die vorhandene Apparatur möglich ist. Zur Erzeugung extrem hoher Ströme wurde zum ersten Mal im Bereich der spinpolarisierten Quellen das Prinzip der „Energierückgewinnung“ eingesetzt. Experimente bei einer mittleren Stromstärke von 11.4 mA und einer Spitzenstromstärke von 57 mA bei 1% Tastverhältnis wurden bereits durchgeführt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with heterogeneous architectures in standard workstations. Heterogeneous architectures represent an appealing alternative to traditional supercomputers because they are based on commodity components fabricated in large quantities. Hence their price-performance ratio is unparalleled in the world of high performance computing (HPC). In particular, different aspects related to the performance and consumption of heterogeneous architectures have been explored. The thesis initially focuses on an efficient implementation of a parallel application, where the execution time is dominated by an high number of floating point instructions. Then the thesis touches the central problem of efficient management of power peaks in heterogeneous computing systems. Finally it discusses a memory-bounded problem, where the execution time is dominated by the memory latency. Specifically, the following main contributions have been carried out: A novel framework for the design and analysis of solar field for Central Receiver Systems (CRS) has been developed. The implementation based on desktop workstation equipped with multiple Graphics Processing Units (GPUs) is motivated by the need to have an accurate and fast simulation environment for studying mirror imperfection and non-planar geometries. Secondly, a power-aware scheduling algorithm on heterogeneous CPU-GPU architectures, based on an efficient distribution of the computing workload to the resources, has been realized. The scheduler manages the resources of several computing nodes with a view to reducing the peak power. The two main contributions of this work follow: the approach reduces the supply cost due to high peak power whilst having negligible impact on the parallelism of computational nodes. from another point of view the developed model allows designer to increase the number of cores without increasing the capacity of the power supply unit. Finally, an implementation for efficient graph exploration on reconfigurable architectures is presented. The purpose is to accelerate graph exploration, reducing the number of random memory accesses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.