808 resultados para Textile fibres, Synthetic
Resumo:
This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three optically active Schiff-base ligands have been prepared by condensation of 2-hydroxyacetophenone with (IR,2R)-(-)-1,2-diaminocyclohexane, (1S,2S)-(-)1,2-diphenylethylenediamine or R-(+)-2,2'-diamino-1,1'-binaphthalene, respectively. The products have been characterized by their IR, H-1- and C-13-NMR spectra.
Resumo:
The aim of the study was to compare the efficacy and safety of transvaginal trocar-guided polypropylene mesh insertion with traditional colporrhaphy for treatment of anterior vaginal wall prolapse.This is a randomized controlled trial in which women with advanced anterior vaginal wall prolapse, at least stage II with Ba a parts per thousand yenaEuro parts per thousand+1 cm according to the Pelvic Organ Prolapse Quantification (POP-Q) classification, were randomly assigned to have either anterior colporrhaphy (n = 39) or repair using trocar-guided transvaginal mesh (n = 40). the primary outcome was objective cure rate of the anterior compartment (point Ba) assessed at the 12-month follow-up visit, with stages 0 and I defined as anatomical success. Secondary outcomes included quantification of other vaginal compartments (POP-Q points), comparison of quality of life by the prolapse quality of life (P-QOL) questionnaire, and complication rate between the groups after 1 year. Study power was fixed as 80 % with 5 % cutoff point (p < 0.05) for statistical significance.The groups were similar regarding demographic and clinical preoperative parameters. Anatomical success rates for colporrhaphy and repair with mesh placement groups were 56.4 vs 82.5 % (95 % confidence interval 0.068-0.54), respectively, and the difference between the groups was statistically significant (p = 0.018). Similar total complication rates were observed in both groups, with tape exposure observed in 5 % of the patients. There was a significant improvement in all P-QOL domains as a result of both procedures (p < 0.001), but they were not distinct between groups (p > 0.05).Trocar-guided transvaginal synthetic mesh for advanced anterior POP repair is associated with a higher anatomical success rate for the anterior compartment compared with traditional colporrhaphy. Quality of life equally improved after both techniques. However, the trial failed to detect differences in P-QOL scores and complication rates between the groups.
Resumo:
Nowadays, classical (bio)remediation processes are affected by some economical and environmental drawbacks. These approaches often seem to be inadequate, particularly in the perspective of sustainable green processes. Since immobilized metalloporphines can emulate the active site of peroxidases and peroxygenases, their use in several bioremediation processes has been analyzed in this work. The described catalytic reactions use bioinspired, homogenized or heterogenized, commercial porphines and showed a remarkable ability to catalyze substrates oxidation at the expenses of different oxidants such as Oxone and hydrogen peroxide. The biomimetic catalysts have been also investigated about their peroxidase- and peroxygenase-like catalysis and ability to emulate lignolytic peroxidases action and substrate specificity. The adducts showed a remarkable ability to catalyze veratryl alcohol (widely recognized as a simple model compound of lignin) oxidation at the expenses of H2O2. In the perspective of broadening industrial applications of the described catalysts, the oxidation of several pollutants such as durable textile dyes and inorganic sulfides, has been attempted with quite promising results, and some findings open the way toward industrial scaling-up. Accordingly, the inexpensiveness of the synthesis and the mild operational conditions allow these adducts to be proposed as applicable catalysts also for industrial large-scale processes. Besides, these synthetic models are helpful also to understand the behavior of pharmaceuticals, antifungal drugs in this case, in the environment, and to predict the drug metabolism by cytochromes P450. The biomimetic catalysts, for the studied cases, also proved to be much more efficient than the corresponding enzymes.
Resumo:
I examine the positive and negative features of synthetic biology (‘SynBio’) from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a ‘precautionary’ approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
The research described in this thesis focuses, principally, on synthesis of stable α-diazosulfoxides and investigation of their reactivity under various reaction conditions (transition-metal catalysed, photochemical, thermal and microwave) with a particular emphasis on the reactive intermediates and mechanistic aspects of the reaction pathways involved. In agreement with previous studies carried out on these compounds, the key reaction pathway of α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. However, a competing reaction pathway involving oxygen migration from sulfur to oxygen was also observed. Critically, isomerisation of α-oxosulfine stereoisomers was observed directly by 1H NMR spectroscopy in this work and this observation accounts for the stereochemical outcomes of the various cycloaddition reactions, whether carried out with in situ trapping or with preformed solutions of sulfines. Furthermore, matrix isolation experiments have shown that electrocyclisation of α-oxosulfines to oxathiiranes takes place and this verifies the proposed mechanisms for enol and disulfide formation. The introductory chapter includes a brief literature review of the synthesis and reactivity of α-diazosulfoxides prior to the commencement of research in this field by the Maguire group. The Wolff rearrangement is also discussed and the characteristic reactions of a number of reactive intermediates (sulfines, sulfenes and oxathiiranes) are outlined. The use of microwave-assisted organic synthesis is also examined, specifically, in the context of α-diazocarbonyl compounds as substrates. The second chapter describes the synthesis of stable monocyclic and bicyclic lactone derivatives of α-diazosulfoxides from sulfide precursors according to established experimental procedures. Approaches to precursors of ketone and sulfimide derivatives of α-diazosulfoxides are also described. The third chapter examines the reactivity of α-diazosulfoxides under thermal, microwave, rhodium(II)-catalysed and photochemical conditions. Comparison of the results obtained under thermal and microwave conditions indicates that there was no evidence for any effect, other than thermal, induced by microwave irradiation. The results of catalyst studies involving several rhodium(II) carboxylate and rhodium(II) carboxamidate catalysts are outlined. Under photochemical conditions, sulfur extrusion is a significant reaction pathway while under thermal or transition metal catalysed conditions, oxygen extrusion is observed. One of the most important observations in this work was the direct spectroscopic observation (by 1H NMR) of interconversion of the E and Z-oxosulfines. Trapping of the α-oxosulfine intermediates as cycloadducts by reaction with 2,3-dimethyl-1,3-butadiene proved useful both synthetically and mechanistically. As the stereochemistry of the α-oxosulfine is retained in the cycloadducts, this provided an ideal method for characterisation of this key feature. In the case of one α-oxosulfine, a novel [2+2] cycloaddition was observed. Preliminary experiments to investigate the reactivity of an α-diazosulfone under rhodium(II) catalysis and microwave irradiation are also described. The fourth chapter describes matrix isolation experiments which were carried out in Rühr Universität, Bochum in collaboration with Prof. Wolfram Sander. These experiments provide direct spectroscopic evidence of an α-oxosulfine intermediate formed by hetero-Wolff rearrangement of an α-diazosulfoxide and subsequent cyclisation of the sulfine to an oxathiirane was also observed. Furthermore, it was possible to identify which stereoisomer of the α-oxosulfine was present in the matrix. A preliminary laser flash photolysis experiment is also discussed. The experimental details, including all spectral and analytical data, are reported at the end of each chapter. The structural interpretation of 1H NMR spectra of the cycloadducts, described in Chapter 3, is discussed in Appendix I.
Resumo:
Chapter 1 of this thesis is a brief introduction to the preparation and reactions of α-diazocarbonyl compounds, with particular emphasis on the areas relating to the research undertaken: C-H insertion, addition to aromatics, and oxonium ylide generation and rearrangement. A short summary of catalyst development illustrates the importance of rhodium(II)carboxylates for α-diazocarbonyl decomposition. Chapter 2 describes intramolecular C-H insertion reactions of α-diazo-β-keto sulphones to form substituted cyclopentanones. Rhodium(II) carboxylates derived from homochiral carboxylic acids were used as catalysts in these reactions and enantioselection achieved through their use is discussed. Chapter 3 describes intramolecular Buchner cyclisation of aryl diazoketones with emphasis on the stereochemical aspects of the cyclisation and subsequent reaction of the bicyclo[5.3.0]decatrienones produced. The partial asymmetric synthesis achieved through use of chiral rhodium(II) carboxylates as catalysts is discussed. The application of the intramolecular Buchner reaction to the synthesis of hydroazulene lactones is illustrated. Chapter 4 demonstrates oxonium ylide formation and rearrangement in the decomposition of an α-diazoketone. The consequences of the use of chiral rhodium(II) carboxylates as catalysts are described. Particularly significant was the discovery that rhodium(II) (S)-mandelate acts as a very efficient catalyst for α-diazoketone decompositions, in general. Moderate asymmetric induction was possible in the decomposition of α-diazoketones with chiral rhodium(II) carboxylates, with rhodium(II) (S)-mandelate being one of the more enantioselective catalysts investigated. However, the asymmetric induction obtained was very dependent on the exact structure of the α-diazoketone, the catalyst, and the nature of the reaction. Chapter 5 contains the experimental details, and the spectral and analytical data for all new compounds reported.
Resumo:
The research described in this thesis focuses on the design and synthesis of stable α-diazosulfoxides and investigation of their reactivity under a variety of conditions (transition-metal catalysis, thermal, photochemical and microwave) with a particular emphasis on the synthesis of novel heterocyclic compounds with potential biological activity. The exclusive reaction pathway for these α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. In the first chapter, a literature review of sulfines is presented, including a discussion of naturally occurring sulfines, and an overview of the synthesis and reactivity of sulfines. The potential of sulfines in organic synthesis and recent developments in particular are highlighted. The second chapter discusses the synthesis and reactivity of α-diazosulfoxides, building on earlier results in this research group. The synthesis of lactone-based α-diazosulfoxides and, for the first time, ketone-based benzofused and monocyclic α-diazosulfoxides is described. The reactivity of these α-diazosulfoxides is then explored under a variety of conditions, such as transition-metal catalysis, photochemical and microwave, generating labile α-oxosulfine intermediates, which are trapped using amines and dienes, in addition to the spontaneous reaction pathways which occur with α-oxosulfines in the absence of a trap. A new reaction pathway was explored with the lactone based α-oxosulfines, involving reaction with amines to generate novel 3-aminofuran-2(5H)-ones via carbophilic attack, in very good yields. The reactivity of ketone-based α-diazosulfoxides was explored for the first time, and once again, pseudo-Wolff rearrangement to the α-oxosulfines was the exclusive reaction pathway observed. The intermediacy of the α-oxosulfines was confirmed by trapping as cycloadducts, with the stereochemical features dependant on the reaction conditions. In the absence of a diene trap, a number of reaction fates from the α-oxosulfines were observed, including complete sulfinyl extrusion to give indanones, sulfur extrusion to give indanediones, and, to a lesser extent, dimerisation. The indanediones were characterised by trapping as quinoxalines, to enable full characterisation. One of the overriding outcomes of this thesis was the provision of new insights into the behaviour of α-oxosulfines with different transition metal catalysts, and under thermal, microwave and photolysis conditions. A series of 3-aminofuran-2(5H)-ones and benzofused dihydro-2H-thiopyran S-oxides were submitted for anticancer screening at the U.S. National Cancer Institute. A number of these derivatives were identified as hit compounds, with excellent cell growth inhibition. One 3-aminofuran-2(5H)-one derivative has been chosen for further screening. The third chapter details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research. The data for the crystal structures are contained in the attached CD.
Resumo:
In this thesis, we present the unique properties of hollow-core photonic crystal fibres (HC-PCFs) for sensing applications in terms of viscosity detection and DNA sensing using a special poly(ethylene) glycol (PEGDA) hydrogel. The low loss HC-PCFs ensure a long interaction length between the sample and the optical signals. Thus in this thesis, we report the characterisation of filled HC-PCFs and the development of a selective filling process. For the first time, we report the investigation of a new viscometer device, and a new device for DNA sensing development, and also the chemical process for hydrogel growth was adapted to the fibres. By combining HC-PCFs with the hydrogel we enable 3D volumetric sample confinement within the HC-PCF, further increasing the interaction between the sample and the optical signal. However, the hydrogel has a large influence on the guidance properties of the HC-PCF and the HC-PCF has a strong influence on the growth process for the hydrogel itself. When we integrate the hydrogel and HC-PCFs we detect concentration levels as low as 400 nM of labelled DNA. However, using our technology for fluorescence detection we can achieve results two orders of magnitude better than those previously reported.
Resumo:
High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.
Resumo:
Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create "synthetic associations" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of "blocks" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.
Resumo:
Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.