929 resultados para Temporary pools
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
In order to effect permanent closure in burns patients suffering from full thickness wounds, replacing their skin via split thickness autografting, is essential. Dermal substitutes in conjunction with widely meshed split thickness autografts (+/- cultured keratinocytes) reduce scarring at the donor and recipient sites of burns patients by reducing demand for autologous skin (both surface area and thickness), without compromising dermal delivery at the wound face. Tissue engineered products such as Integra consist of a dermal template which is rapidly remodelled to form a neodermis, at which time the temporary silicone outer layer is removed and replaced with autologous split thickness skin. Whilst provision of a thick tissue engineered dermis at full thickness burn sites reduces scarring, it is hampered by delays in vascularisation which results in clinical failure. The ultimate success of any skin graft product is dependent upon a number of basic factors including adherence, haemostasis and in the case of viable tissue grafts, success is ultimately dependent upon restoration of a normal blood supply, and hence this study. Ultimately, the goal of this research is to improve the therapeutic properties of tissue replacements, through impregnation with growth factors aimed at stimulating migration and proliferation of microvascular endothelial cells into the donor tissue post grafting. For the purpose of my masters, the aim was to evaluate the responsiveness of a dermal microvascular endothelial cell line to growth factors and haemostatic factors, in the presence of the glycoprotein vitronectin. Vitronectin formed the backbone for my hypothesis and research due to its association with both epithelial and, more specifically, endothelial migration and proliferation. Early work using a platform technology referred to as VitroGro (Tissue Therapies Ltd), which is comprised of vitronectin bound BP5/IGF-1, aided keratinocyte proliferation. I hypothesised that this result would translate to another epithelium - endothelium. VitroGro had no effect on endothelial proliferation or migration. Vitronectin increases the presence of Fibroblast Growth Factor (FGF) and Vascular Endothelial Growth Factor (VEGF) receptors, enhancing cell responsiveness to their respective ligands. So, although Human Microvascular Endothelial Cell line 1 (HMEC-1) VEGF receptor expression is generally low, it was hypothesised that exposure to vitronectin would up-regulate this receptor. HMEC-1 migration, but not proliferation, was enhanced by vitronectin bound VEGF, as well as vitronectin bound Epidermal Growth Factor (EGF), both of which could be used to stimulate microvascular endothelial cell migration for the purpose of transplantation. In addition to vitronectin's synergy with various growth factors, it has also been shown to play a role in haemostasis. Vitronectin binds thrombin-antithrombin III (TAT) to form a trimeric complex that takes on many of the attributes of vitronectin, such as heparin affinity, which results in its adherence to endothelium via heparan sulfate proteoglycans (HSP), followed by unaltered transcytosis through the endothelium, and ultimately its removal from the circulation. This has been documented as a mechanism designed to remove thrombin from the circulation. Equally, it could be argued that it is a mechanism for delivering vitronectin to the matrix. My results show that matrix-bound vitronectin dramatically alters the effect that conformationally altered antithrombin three (cATIII) has on proliferation of microvascular endothelial cells. cATIII stimulates HMEC-1 proliferation in the presence of matrix-bound vitronectin, as opposed to inhibiting proliferation in its absence. Binding vitronectin to tissues and organs prior to transplant, in the presence of cATIII, will have a profound effect on microvascular infiltration of the graft, by preventing occlusion of existing vessels whilst stimulating migration and proliferation of endothelium within the tissue.
Resumo:
The efficiency of agricultural management practices to store SOC depends on C input level and how far a soil is from its saturation level (i.e. saturation deficit). The C Saturation hypothesis suggests an ultimate soil C stabilization capacity defined by four SOM pools capable of C saturation: (1) non-protected, (2) physically protected, (3) chemically protected and (4) biochemically protected. We tested if C saturation deficit and the amount of added C influenced SOC storage in measurable soil fractions corresponding to the conceptual chemical, physical, biochemical, and non-protected C pools. We added two levels of C-13- labeled residue to soil samples from seven agricultural sites that were either closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation level and incubated them for 2.5 years. Residue-derived C stabilization was, in most sites, directly related to C saturation deficit but mechanisms of C stabilization differed between the chemically and biochemically protected pools. The physically protected C pool showed a varied effect of C saturation deficit on C-13 stabilization, due to opposite behavior of the POM and mineral fractions. We found distinct behavior between unaggregated and aggregated mineral-associated fractions emphasizing the mechanistic difference between the chemically and physically protected C-pools. To accurately predict SOC dynamics and stabilization, C Saturation of soil C pools, particularly the chemically and biochemically protected pools, should be considered. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.
Resumo:
Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.
Resumo:
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.
Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions
Resumo:
Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.
Resumo:
Changes in grassland management intended to increase productivity can lead to sequestration of substantial amounts of atmospheric C in soils. Management-intensive grazing (MiG) can increase forage production in mesic pastures, but potential impacts on soil C have not been evaluated. We sampled four pastures (to 50 cm depth) in Virginia, USA, under MiG and neighboring pastures that were extensively grazed or bayed to evaluate impacts of grazing management on total soil organic C and N pools, and soil C fractions. Total organic soil C averaged 8.4 Mg C ha(-1) (22%) greater under MiG; differences were significant at three of the four sites examined while total soil N was greater for two sites. Surface (0-10 cm) particulate organic matter (POM) C increased at two sites; POM C for the entire depth increment (0-50 cm) did not differ significantly between grazing treatments at any of the sites. Mineral-associated C was related to silt plus clay content and tended to be greater under MiG. Neither soil C:N ratios, POM C, or POM C:total C ratios were accurate indicators of differences in total soil C between grazing treatments, though differences in total soil C between treatments attributable to changes in POM C (43%) were larger than expected based on POM C as a percentage of total C (24.5%). Soil C sequestration rates, estimated by calculating total organic soil C differences between treatments (assuming they arose from changing grazing management and can be achieved elsewhere) and dividing by duration of treatment, averaged 0.41 Mg C ha(-1) year(-1) across the four sites.
Resumo:
The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53-250 mum sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.
Resumo:
Previous research suggests that soil organic C pools may be a feature of semiarid regions that are particularly sensitive to climatic changes. We instituted an 18-mo experiment along an elevation gradient in northern Arizona to evaluate the influence of temperature, moisture, and soil C pool size on soil respiration. Soils, from underneath different free canopy types and interspaces of three semiarid ecosystems, were moved upslope and/or downslope to modify soil climate. Soils moved downslope experienced increased temperature and decreased precipitation, resulting in decreased soil moisture and soil respiration las much as 23 acid 20%, respectively). Soils moved upslope to more mesic, cooler sites had greater soil water content and increased rates of soil respiration las much as 40%), despite decreased temperature. Soil respiration rates normalized for total C were not significantly different within any of the three incubation sites, indicating that under identical climatic conditions, soil respiration is directly related to soil C pool size for the incubated soils. Normalized soil respiration rates between sites differed significantly for all soil types and were always greater for soils incubated under more mesic, but cooler, conditions. Total soil C did not change significantly during the experiment, but estimates suggest that significant portions of the rapidly cycling C pool were lost. While long-term decreases in aboveground and belowground detrital inputs may ultimately be greater than decreased soil respiration, the initial response to increased temperature and decreased precipitation in these systems is a decrease in annual soil C efflux.
Resumo:
The purpose of this thesis is to outline the relationship that existed in the past and exists in the present, between Australians and the War Graves and Memorials to the Missing. commemorations of Australians who died during the First World War. Their final resting places are scattered all over the world and provide a tangible record of the sacrifice of men and women in the war, and represent the final result by Official Agencies such as the Imperial, and later, Commonwealth War Graves Commission, and its agency representative, the Office of Australian War Graves, of an attempt to appropriately commemorate them. The study follows the path of history from the event of death of an individual in the First World War, through their burial; temporary grave or memorial commemoration; the permanent commemoration; the family and public reaction to the deaths; how the Official Agencies of related Commonwealth Governments dealt with the dead; and finally, how the Australian dead are represented on the battlefields of the world in the 21st century. Australia.s war dead of the First World War are scattered around the globe in more than 40 countries and are represented in war cemeteries and civil cemeteries; and listed on large „Memorials to the Missing., which commemorate the individuals devoid of a known graves or final resting place.
Resumo:
Drivers are known to be optimistic about their risk of crash involvement, believing that they are less likely to be involved in a crash than other drivers. However, little comparative research has been conducted among other road users. In addition, optimism about crash risk is conceptualised as applying only to an individual’s assessment of his or her personal risk of crash involvement. The possibility that the self-serving nature of optimism about safety might be generalised to the group-level as a cyclist or a pedestrian, i.e., becoming group-serving rather than self-serving, has been overlooked in relation to road safety. This study analysed a subset of data collected as part of a larger research project on the visibility of pedestrians, cyclists and road workers, focusing on a set of questionnaire items administered to 406 pedestrians, 838 cyclists and 622 drivers. The items related to safety in various scenarios involving drivers, pedestrians and cyclists, allowing predictions to be derived about group differences in agreement with items based on the assumption that the results would exhibit group-serving bias. Analysis of the responses indicated that specific hypotheses about group-serving interpretations of safety and responsibility were supported in 22 of the 26 comparisons. When the nine comparisons relevant to low lighting conditions were considered separately, seven were found to be supported. The findings of the research have implications for public education and for the likely acceptance of messages which are inconsistent with current assumptions and expectations of pedestrians and cyclists. They also suggest that research into group-serving interpretations of safety, even for temporary roles rather than enduring groups, could be fruitful. Further, there is an implication that gains in safety can be made by better educating road users about the limitations of their visibility and the ramifications of this for their own road safety, particularly in low light.
Resumo:
Driver aggression is an increasing concern for motorists, with some research suggesting that drivers who behave aggressively perceive their actions as justified by the poor driving of others. Thus attributions may play an important role in understanding driver aggression. A convenience sample of 193 drivers (aged 17-36) randomly assigned to two separate roles (‘perpetrators’ and ‘victims’) responded to eight scenarios of driver aggression. Drivers also completed the Aggression Questionnaire and Driving Anger Scale. Consistent with the actor-observer bias, ‘victims’ (or recipients) in this study were significantly more likely than ‘perpetrators’ (or instigators) to endorse inadequacies in the instigator’s driving skills as the cause of driver aggression. Instigators were significantly more likely attribute the depicted behaviours to external but temporary causes (lapses in judgement or errors) rather than stable causes. This suggests that instigators recognised drivers as responsible for driving aggressively but downplayed this somewhat in comparison to ‘victims’/recipients. Recipients and instigators agreed that the behaviours were examples of aggressive driving but instigators appeared to focus on the degree of intentionality of the driver in making their assessments while recipients appeared to focus on the safety implications. Contrary to expectations, instigators gave mean ratings of the emotional impact of driving aggression on recipients that were higher in all cases than the mean ratings given by the recipients. Drivers appear to perceive aggressive behaviours as modifiable, with the implication that interventions could appeal to drivers’ sense of self-efficacy to suggest strategies for overcoming plausible and modifiable attributions (e.g. lapses in judgement; errors) underpinning behaviours perceived as aggressive.