972 resultados para T-cell receptor (TCR) repertoire


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxoplasma gondii is an obligatory intracellular parasite whose life cycle may include man as an intermediate host. More than 500 million people are infected with this parasite worldwide. It has been previously reported that T. gondii contains a superantigen activity. The purpose of the present study was to determine if the putative superantigen activity of T. gondii would manifest towards human T cells. Peripheral blood mononuclear cells (PBMC) from individuals with no previous contact with the parasite were evaluated for proliferation as well as specific Vß expansion after exposure to Toxoplasma antigens. Likewise, PBMC from individuals with the congenital infection were evaluated for putative Vß family deletions in their T cell repertoire. We also evaluated, over a period of one year, the PBMC proliferation pattern in response to Toxoplasma antigens in patients with recently acquired infection. Some degree of proliferation in response to T. gondii was observed in the PBMC from individuals never exposed to the parasite, accompanied by specific Vß expansion, suggesting a superantigen effect. However, we found no specific deletion of Vß (or Valpha) families in the blood of congenitally infected individuals. Furthermore, PBMC from recently infected individuals followed up over a period of one year did not present a reduction of the Vß families that were originally expanded in response to the parasite antigens. Taken together, our data suggest that T. gondii does not have a strong superantigen activity on human T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The balance of T helper (Th) cell differentiation is the fundamental process that ensures that the immune system functions correctly and effectively. The differentiation is a fine tuned event, the outcome of which is driven by activation of the T-cell in response to recognition of the specific antigen presented. The co-stimulatory signals from the surrounding cytokine milieu help to determine the outcome. An impairment in the differentiation processes may lead to an imbalance in immune responses and lead to immune-mediated pathologies. An over-representation of Th1 type cytokine producing cells leads to tissue-specific inflammation and autoimmunity, and excessive Th2 response is causative for atopy, asthma and allergy. The major factors of Th-cell differentiation and in the related disease mechanisms have been extensively studied, but the fine tuning of these processes by the other factors cannot be discarded. In the work presented in this thesis, the association of T-cell receptor costimulatory molecules CTLA4 and ICOS with autoimmune diabetes were studied. The underlying aspect of the study was to explore the polymorphism in these genes with the different disease rates observed in two geographically close populations. The main focus of this thesis was set on a GTPase of the immunity associated protein (GIMAP) family of small GTPases. GIMAP genes and proteins are differentially regulated during human Th-cell differentiation and have been linked to immune-mediated disorders. GIMAP4 is believed to contribute to the immunological balance via its role in T-cell survival. To elucidate the function of GIMAP4 and GIMAP5 and their role in human immunity, a study combining genetic association in different immunological diseases and complementing functional analyses was conducted. The study revealed interesting connections with the high susceptibility risk genes. In addition, the role of GIMAP4 during Th1-cell differentiation was investigated. A novel function of GIMAP4 in relation to cytokine secretion was discovered. Further assessment of GIMAP4 and GIMAP5 effect for the transcriptomic profile of differentiating Th1-cells revealed new insights for GIMAP4 and GIMAP5 function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La sclérose en plaques est une maladie neuroinflammatoire idiopathique caractérisée par la formation de lésions focales de démyélinisation, qui apparaissent suite à l’infiltration périvasculaire de cellules immunitaires et à l’augmentation de la perméabilité de la barrière hémato-encéphalique. L’encéphalomyélite auto-immune expérimentale (EAE) est le modèle animal de cette maladie. Cependant, ce modèle présente des différences importantes avec la sclérose en plaques. L’objectif de ce projet de maîtrise était d’approfondir la caractérisation d’un nouveau modèle transgénique d’encéphalomyélite auto-immune expérimentale spontanée, le modèle TCR1640, afin de valider celui-ci pour l’étude des phénomènes physiopathologiques qui surviennent à différents stades de la sclérose en plaques, ainsi que pour le développement de nouveaux traitements de la maladie. La souris TCR1640 porte un récepteur des cellules T (TCR) transgénique autoréactif, qui reconnaît un peptide de la myéline et déclenche une réaction auto-immune contre la myéline endogène au sein du système nerveux central (SNC). Des observations faites in situ et in vitro ont permis d’identifier des changements qui surviennent de façon très précoce dans l’unité neurovasculaire chez les animaux TCR1640 présymptomatiques, et qui sont liés à la présence d’un profil immunitaire périphérique proinflammatoire. Lors des phases actives de l’EAE spontanée, les animaux TCR1640 au stade chronique présentent une inflammation accrue du système nerveux central associée à une infiltration leucocytaire massive, par rapport aux animaux au stade aigu de la maladie. Une étude in vivo a également permis de moduler la maladie développée par des animaux ayant subi une immunisation passive avec des cellules T auxiliaires en provenance de souris TCR1640. Enfin, l’implication de nouvelles molécules d’adhésion cellulaire dans le développement et le maintien de l’EAE spontanée a été suggérée par des observations in vitro. L’ensemble de ces résultats suggère que le modèle TCR1640 présente plusieurs avantages pour l’étude de la physiopathologie de maladies neuroinflammatoires telles que la sclérose en plaques, et servira d’outil afin de valider de nouvelles stratégies thérapeutiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproductive ageing is linked to the depletion of ovarian primordial follicles, which causes an irreversible change to ovarian cellular function and the capacity to reproduce. The current study aimed to profile the expression of bone morphogenetic protein receptor, (BMPR1B) in 53 IVF patients exhibiting different degrees of primordial follicle depletion. The granulosa cell receptor density was measured in 403 follicles via flow cytometry. A decline in BMPR1B density occurred at the time of dominant follicle selection and during the terminal stage of folliculogenesis in the 23-30 y good ovarian reserve patients. The 40+ y poor ovarian reserve patients experienced a reversal of this pattern. The results demonstrate an association between age-induced depletion of the ovarian reserve and BMPR1B receptor density at the two critical time points of dominant follicle selection and pre-ovulatory follicle maturation. Dysregulation of BMP receptor signalling may inhibit the normal steroidogenic differentiation required for maturation in older patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the case of an 8-month-old infant with a diagnosis of juvenile myelomonocytic leukemia (JMML) and type I neurofibromatosis that presented progression to B lineage acute lymphoid leukemia (ALL). The same rearrangement of gene T-cell receptor gamma (TCRgamma) was detected upon diagnosis of JMML and ALL, suggesting that both neoplasias may have evolved from the same clone. Our results support the theory that JMML may derive from pluripotential cells and that the occurrence of monosomy of chromosome 7 within a clone of cells having an aberrant neurofibromatosis type 1 (NFI) gene may be the cause of JMML and acute leukemia. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed cerebrospinal fluid (CSF) samples from 65 consecutive children with acute lymphoblastic leukemia (ALL) treated according to two different treatment protocols (GBTLI-ALL-93 and -99) with no puncture accident for minimal residual disease (MRD) in the central nervous system (CNS). Minimal residual disease was detected by polymerase chain reaction (PCR) with homo/heteroduplex analysis using consensus primers to IgH and TCR genes. MRD in the CSF at diagnosis was detected by PCR in 46.8% of children with no puncture accident or morphological involvement. In patients treated with GBTLI-ALL-93 a significantly lower 5-year event-free survival (EFS) was demonstrated for those with CSF involvement, in univariate (p = 0.01) and multivariate (p = 0.04) analysis. This observation was not true for patients treated with the more intensive protocol GBTLI-ALL-99 (p = 0.81). These findings suggest that MRD detection in the CSF is a common event in children with ALL. Treatment intensification provided by the GBTLI-ALL-99 apparently overcomes the detrimental effect of CNS minimal residual disease at diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this retrospective study was to investigate the results of T-cell large granular lymphocytic leukemia treatment with fludarabine by assessing the complete hematologic response, the complete molecular response, progression-free survival, and overall survival. METHODS: We evaluated the records of six patients with T-cell large granular lymphocytic leukemia who were treated with fludarabine as a first-, second-, or third-line therapy, at a dose of 40 mg/m(2), for three to five days per month and 6 to 8 cycles. RESULTS: Of the six patients investigated with T-cell large granular lymphocytic leukemia who were treated with fludarabine, five (83.3%) were female, and their median age was 36.5 years (range 18 to 73). The median lymphocyte level was 3.4x10(9)/L (0.5 to 8.9). All patients exhibited a monoclonal T-cell receptor gamma gene rearrangement at diagnosis. Two (33.3%) patients received fludarabine as first-line treatment, two (33.3%) for refractory disease, one (16.6%) for relapsed disease after the suspension of methotrexate treatment due to liver toxicity, and one (16.6%) due to dyspesia. A complete hematologic response was achieved in all cases, and a complete molecular response was achieved in five out six cases (83.3%). During a mean follow-up period of 12 months, both the progression-free survival and overall survival rates were 100%. CONCLUSION: T-cell large granular lymphocytic leukemia demonstrated a high rate of complete hematologic and molecular response to fludarabine, with excellent compliance and tolerability rates. To confirm our results in this rare disease, we believe that fludarabine should be tested in clinical trials as a first-line treatment for T-cell large granular lymphocytic leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aus dem tumorreaktiven T-Zellrepertoire der Melanompatientin Ma-Mel-86/INTH, bei der im Verlauf Lymphknotenmetastasen HLA-Klasse I-negativer Tumorzellen auftraten, wurden durch Stimulation mit autologen Tumorzellen CD8+ T-Zellklone isoliert und expandiert, die auf Melanomzellen der Patientin CSF2RA (engl. GM-CSF receptor alpha chain) in HLA-unabhängiger Weise erkannten. Aus einem der T-Zellklone wurde ein CSF2RA-reaktiver α:β-T-Zellrezeptor (TCR, engl. T-cell receptor) kloniert (Bezeichnung: TCR-1A.3/46). Die α-Kette des TCR enthielt die Domänen TRAV14/DV4*01, TRAJ48*01 und TRAC*01, die β-Kette die Domänen TRBV10-3*01, TRBD2*01, TRBJ2-7*01 und TRBC2*01. Durch Austausch der humanen konstanten gegen die homologen murinen Domänen wurde der TCR optimiert (Bezeichnung: cTCR-1A.3/46) und hinsichtlich seiner Expression und Funktionalität nach retroviralem Transfer in humane PBMC (engl. peripheral blood mononuclear cells) im 51Chromfreisetzungstest, im IFN-γ-ELISpot-Assay und in einem Degranulations-Assay validiert. TCR-transgene T-Zellen lysierten nicht nur spezifisch die HLA-defizienten, CSF2RA+ Melanomlinien des Modells Ma-Mel-86, sondern erkannten auch Zelllinien verschiedener Spezies nach Transfektion von CSF2RA sowie Monozyten, Granulozyten, dendritische Zellen und ein breites Spektrum hämatologischer Malignome myeloiden Ursprungs ungeachtet deren HLA-Phänotypen. Lymphatische Zellen sowie CD34+ Blutstammzellen wurden in In vitro-Untersuchungen nicht erkannt. Der Zusatz von GM-CSF zu Zellen, die CSF2RA und CSF2RB exprimierten, inhibierte die Erkennung durch TCR-transgene PBMC, während die Koexpression der α- und der ß-Kette des GM-CSF-Rezeptors alleine keinen negativen Effekt auf die Erkennung hatte. Daraus war zu schließen, dass CSF2RA präferentiell freistehend und weniger nach Integration in den heteromultimerischen GM-CSF-Rezeptor-Komplex erkannt wurde. In der zweidimensionalen Collier-de-Perles-Visualisierung der IMGT-Datenbank (engl. International immunogenetics information system) wies der CSF2RA-reaktive TCR-1A.3/46 im Vergleich zu TCR von konventionellen, HLA-restringierten T-Zellen keine Besonderheiten auf. Darüber hinaus waren auch die von den HLA-unabhängigen T-Zellen exprimierten CD8-Moleküle identisch zu den CD8-Molekülen HLA-abhängiger CTL (engl. cytotoxic T lymphocytes). Die Präsenz von CD8-Molekülen förderte die HLA-unabhängige Erkennung von CSF2RA, schien aber dafür nicht zwingend erforderlich zu sein, da Antikörper gegen CD8 die Erkennung zu ca. 65 % blockierten und TCR-transgene CD4+ T-Zellen im Vergleich zu TCR-transduzierten CD8+ T-Zellen eine deutlich verringerte, aber noch erhaltene Funktionalität aufwiesen. Es ist derzeit nicht klar, ob HLA-unabhängige T-Zellen gegen CSF2RA im peripheren Blut der Patientin vorkamen, weil sie der im Tiermodell postulierten Thymusselektion MHC-unabhängiger TCR (Tikhonova et al., Immunity 36:79, 2012) entkommen waren, oder weil ein ursprünglich gegen einen HLA-Peptid-Komplex gerichteter TCR eine HLA-unabhängige Kreuzreaktivität aufwies. CSF2RA verbessert die Glucoseutilisation in malignen Zellen, und es wurden ihm embryotrophe Eigenschaften zugeschrieben (Spielholz et al., Blood 85:973, 1995; Sjöblom et al., Biol. Reprod. 67:1817, 2002). Damit kann CSF2RA malignes Wachstum fördern und ist somit ein potentielles Zielmolekül für die Immuntherapie. Seine HLA-unabhängige Erkennung würde sowohl die HLA-Vielfalt als auch den HLA-Verlust als typische Limitationen der T-Zellimmuntherapie umgehen. Zur Überprüfung der In vivo-Spezifität des HLA-unabhängigen TCR gegen CSF2RA und damit zum Ausschluss relevanter off-tumor-/on-target- bzw. off-tumor-/off-target-Effekte ist jedoch eine Testung in einem präklinischen Tiermodell erforderlich.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adoptive T cell therapy using antigen-specific T lymphocytes is a powerful immunotherapeutic approach against cancer. Nevertheless, many T cells against tumor-antigens exhibit only weak anti-tumoral response. To overcome this barrier it is necessary to improve the potency and anti-tumoral efficacy of these T cells. Activation and activity of T cells are tightly controlled to inhibit unwanted T cell responses and to reduce the risk of autoimmunity. Both are regulated by extrinsic signals and intrinsic mechanisms which suppress T cell activation. The intrinsic mechanisms include the expression of phosphatases that counteract the activation-inducing kinases. Modifying the expression of these phosphatases allows the targeted modulation of T cell reactivity. MicroRNAs (miRNAs) are regulatory small noncoding RNA molecules that control gene expression by targeting messenger RNAs in a sequence specific manner. Gene-specific silencing plays a key role in diverse biological processes, such as development, differentiation, and functionality. miR181a has been shown to be highly expressed in immature T cells that recognize low-affinity antigens.rnThe present study successfully shows that ectopic expression of miR181a is able to enhance the sensitivity of both murine and human T cells. In CD4+ T helper cells as well as in CD8+ cytotoxic T cells the overexpression of miR181a leads to downregulation of multiple phosphatases involved in the T cell receptor signaling pathway. Overexpression of miR181a in human T cells achieves a co-stimulatory independent activation and has an anti-apoptotic effect on CD4+ T helper cells. Additionally, increasing the amount of miR181a enhances the cytolytic activity of murine CD8+ TCRtg T cells in an antigen-specific manner.rnTo test miR181a overexpressing T cells in vivo, a mouse tumor model using a B cell lymphoma cell line (A20-HA) expressing the Influenza hemagglutinin (Infl.-HA) antigen was established. The expression of model antigens in tumor cell lines enables targeted elimination of tumors using TCRtg T cells. The transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ T cells alone has no positive effect neither on tumor control nor on survival of A20-HA tumor-bearing mice. In contrast, the co-transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ and CD4+ T cells leads to improved tumor control and prolongs survival of A20-HA tumor-bearing mice. This effect is characterized by higher amounts of effector T cells and the expansion of Infl.-HA TCRtg CD8+ T cells.rnAll effects were achieved by changes in expression of several genes including molecules involved in T cell differentiation, activation, and regulation, cytotoxic effector molecules, and receptors important for the homing process of T cells in miR181a overexpressing T cells. The present study demonstrates that miR181a is able to enhance the anti-tumoral response of antigen-specific T cells and is a promising candidate for improving adoptive cell therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue--namely upregulation of major histocompatibility antigens and lymphocyte infiltrates--are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4(+) T cells or superantigen stimulated CD8(+) T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17-dependent inflammatory arthritis developed after dectin 1-mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with skin nodules characterized by the infiltrate of pleomorphic small/medium T lymphocytes are currently classified as "primary cutaneous CD4+ small-/medium-sized pleomorphic T-cell lymphoma" (SMPTCL) or as T-cell pseudolymphoma. The distinction is often arbitrary, and patients with similar clinicopathologic features have been included in both groups. We studied 136 patients (male:female = 1:1; median age: 53 years, age range: 3-90 years) with cutaneous lesions that could be classified as small-/medium-sized pleomorphic T-cell lymphoma according to current diagnostic criteria. All but 3 patients presented with solitary nodules located mostly on the head and neck area (75%). Histopathologic features were characterized by nonepidermotropic, nodular, or diffuse infiltrates of small- to medium-sized pleomorphic T lymphocytes. A monoclonal rearrangement of the T-cell receptor-gamma gene was found in 60% of tested cases. Follow-up data available for 45 patients revealed that 41 of them were alive without lymphoma after a median time of 63 months (range: 1-357 months), whereas 4 were alive with cutaneous disease (range: 2-16 months). The incongruity between the indolent clinical course and the worrying histopathologic and molecular features poses difficulties in classifying these cases unambiguously as benign or malignant, and it may be better to refer to them with a descriptive term such as "cutaneous nodular proliferation of pleomorphic T lymphocytes of undetermined significance," rather than forcing them into one or the other category. On the other hand, irrespective of the name given to these equivocal cutaneous lymphoid proliferations, published data support a nonaggressive therapeutic strategy, particularly for patients presenting with solitary lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphoid organ hypertrophy is a hallmark of localized infection. During the inflammatory response, massive changes in lymphocyte recirculation and turnover boost lymphoid organ cellularity. Intriguingly, the exact nature of these changes remains undefined to date. Here, we report that hypertrophy of Salmonella-infected Peyer's patches (PPs) ensues from a global "shutdown" of lymphocyte egress, which traps recirculating lymphocytes in PPs. Surprisingly, infection-induced lymphocyte sequestration did not require previously proposed mediators of lymphoid organ shutdown including type I interferon receptor and CD69. In contrast, following T-cell receptor-mediated priming, CD69 was essential to selectively block CD4+ effector T-cell egress. Our findings segregate two distinct lymphocyte sequestration mechanisms, which differentially rely on intrinsic modulation of lymphocyte egress capacity and inflammation-induced changes in the lymphoid organ environment.