829 resultados para T S fuzzy system
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
Various environmental management systems, standards and tools are being created to assist companies to become more environmental friendly. However, not all the enterprises have adopted environmental policies in the same scale and range. Additionally, there is no existing guide to help them determine their level of environmental responsibility and subsequently, provide support to enable them to move forward towards environmental responsibility excellence. This research proposes the use of a Belief Rule-Based approach to assess an enterprise’s level commitment to environmental issues. The Environmental Responsibility BRB assessment system has been developed for this research. Participating companies will have to complete a structured questionnaire. An automated analysis of their responses (using the Belief Rule-Based approach) will determine their environmental responsibility level. This is followed by a recommendation on how to progress to the next level. The recommended best practices will help promote understanding, increase awareness, and make the organization greener. BRB systems consist of two parts: Knowledge Base and Inference Engine. The knowledge base in this research is constructed after an in-depth literature review, critical analyses of existing environmental performance assessment models and primarily guided by the EU Draft Background Report on "Best Environmental Management Practice in the Telecommunications and ICT Services Sector". The reasoning algorithm of a selected Drools JBoss BRB inference engine is forward chaining, where an inference starts iteratively searching for a pattern-match of the input and if-then clause. However, the forward chaining mechanism is not equipped with uncertainty handling. Therefore, a decision is made to deploy an evidential reasoning and forward chaining with a hybrid knowledge representation inference scheme to accommodate imprecision, ambiguity and fuzzy types of uncertainties. It is believed that such a system generates well balanced, sensible and Green ICT readiness adapted results, to help enterprises focus on making improvements on more sustainable business operations.
Resumo:
At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.
Resumo:
Entender o comportamento e suas pequenas variações decorrentes das mudanças do ambiente térmico e desenvolver modelos que simulem o bem-estar a partir de respostas das aves ao ambiente constituem o primeiro passo para a criação de um sistema de monitoramento digital de aves em galpões de produção. Neste trabalho, foi desenvolvido um sistema de suporte à decisão com base na teoria dos conjuntos fuzzy para a estimativa do bem-estar de matrizes pesadas em função de frequências e duração dos comportamentos expressos pelas aves. O desenvolvimento do sistema passou por cinco etapas distintas: 1) organização dos dados experimentais; 2) apresentação dos vídeos em entrevista com especialista; 3) criação das funções de pertinência com base nas entrevistas e na revisão da literatura; 4) simulação de frequências de ocorrências e tempos médios de expressão dos comportamentos classificados como indicadores de bem-estar utilizando equações de regressão obtidas na literatura, e 5) construção das regras, simulação e validação do sistema. O sistema fuzzy desenvolvido estimou satisfatoriamente o bem-estar de matrizes pesadas, tendo na sua última versão, com maior número de regras, acertado 77,8% dos dados experimentais, comparados com as respostas esperadas por um especialista. O sistema pode ser utilizado como instrumento matemático-computacional para apoiar decisões em galpões de produção de matrizes pesadas.
Resumo:
From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.
Resumo:
In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.
Resumo:
This paper extends the symmetric/constrained fuzzy powerflow models by including the potential correlations between nodal injections. Therefore, the extension of the model allows the specification of fuzzy generation and load values and of potential correlations between nodal injections. The enhanced version of the symmetric/constrained fuzzy powerflow model is applied to the 30-bus IEEE test system. The results prove the importance of the inclusion of data correlations in the analysis of transmission system adequacy.