915 resultados para Synaptic Plasticity
Resumo:
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.
Resumo:
OBJECTIVE: To assess the variation in Anopheles darlingi's biting activity compared to An. marajoara in the same locality and to biting activity data from other regions. METHODS: Using human bait, eight observations of the biting activity of An. darlingi and An. marajoara were carried out during 1999 and 2000 in the municipality of São Raimundo do Pirativa, state of Amapá, Brazil. Each observation consisted of three consecutive 13-hour collections, close to full moon. There were shifts of collectors in the observation points and nocturnal periods. RESULTS: An. darlingi revealed considerable plasticity of biting activity in contrast to An. marajoara, which showed well-defined crepuscular biting peaks. No significant correlation between density and biting activity was found, but a significant correlation existed between time and proportional crepuscular activity, indicating underlying ecological processes not yet understood. Two of the four available data sets having multiple observations at one locality showed considerable plasticity of this species' biting patterns as well. CONCLUSION: Intra-population variation of biting activity can be as significant as inter-population variation. Some implications in malaria vector control and specific studies are also discussed.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
The water-rat Nectomys squamipes is mostly important non-human host in schistosomiasis mansoni transmission in Brazil, due to its susceptibility, high abundance and water-contact pattern. During experimental infection of N. squamipes with Schistosoma mansoni, adult worms show phenotypic plasticity. This finding led us to investigate whether biological behavior is also affected. This was assessed comparing the biological characteristics of four S. mansoni strains: BE (State of Belém do Pará), CE (State of Pernambuco), CMO (State of Rio Grande do Norte) and SJ (State of São Paulo) using laboratory-bred N. squamipes. The infection was monitored by determination of the pre-patent period, fecal egg output, egg viability, intestinal egg count and, infectivity rate. No biological modification was observed in these parameters. Overall results highlight that N. squamipes was susceptible to several S. mansoni strains, suggesting that it might contribute to the maintenance of schistosomiasis mansoni in Brazil.
Resumo:
Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases.
Epigenetics and behavioural plasticity: drosophila euchromatin histone metiltransferase and foraging
Resumo:
A thesis submitted in fulfillment of the requirements for the degree of Masters in Molecular Genetics and Biomedicine
Resumo:
Tyrosine hydroxylase (TH) deficiency is an inborn error of dopamine biosynthesis and a cause of early parkinsonism. Two clinical phenotypes have been described. Type “B”: early onset severe encephalopathy; type “A”: later onset, less severe and better response to L-dopa. We aimed to study the expression of several key dopaminergic and gabaergic synaptic proteins in the cerebrospinal fluid (CSF) of a series of patients with TH deficiency and their possible relation with the clinical phenotype and response to L-DOPA. Dopamine transporter (DAT), D2-receptor and vesicularmonoamine transporter (VMAT2)weremeasured in the CSF of 10 subjectswith THdeficiency byWestern blot analysis. In 3 patients, data of pre- and post-treatmentwith L-DOPA were available, and in one of them, GABA vesicular transporter was determined. Results were compared to an age-matched control population. The concentration of D2-receptors in CSFwas significantly higher in patients with TH deficiency than in controls. Similarly, DAT and vesicular monoamine transporter type 2 were up-regulated. Studies performed before LDOPA, and on L-DOPA therapy showed a paradoxical response with D2 receptor expression increase as L-Dopa doses and homovanillic concentration gradually raised in a B phenotype patient. The opposite results were found in two patients with A phenotype. However, this is a very small sample, and further studies are needed to conclude robust differences between phenotypes. Synaptic proteins are detectable in the CSF and their quantification can be useful for understanding the pathophysiology of neurotransmitter defects and potentially to adjust and personalize treatments in the future.
Resumo:
The environment can modify developmental trajectories and generate a range of distinct phenotypes without altering an organism’s genome, a widespread phenomenon called developmental plasticity. The past decades have seen a resurgent interest in understanding how developmental plasticity contributes to evolutionary processes, as it can produce phenotypic variation among individuals and facilitate diversification among populations that inhabit distinct ecological niches. To better understand the importance of plastic responses for evolutionary change, we need to explore how the environment alters development to produce phenotypic variation and then compare this to how genetic variation influences these same developmental processes.(...)
Resumo:
Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the absence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment.
Resumo:
OBJETIVOS: Diante das lacunas na efetividade das terapêuticas para transtornos por uso de Cannabis, a droga ilícita mais consumida no mundo, este trabalho propõe-se a rever os conhecimentos sobre o substrato neuroanatômico, biomolecular e celular do sistema endocanabinoide, descrever os mecanismos de neuroplasticidade dependente dos canabinoides e relacioná-los com a neurobiologia dos transtornos por uso de Cannabis (abuso e dependência). MÉTODOS: Recorreu-se às bases de dados Medline, Scopus e ISI Web of Knowledge; as palavras-chave pesquisadas foram "Cannabis", "neurobiology", "endocannabinoid system", "endocannabinoids", "receptors, cannabinoid", "neuronal plasticity", "long-term synaptic depression", "long-term potentiation", "marijuana abuse" e "tetrahydrocannabinol". Foram incluídos 80 trabalhos nesta revisão. DISCUSSÃO: A distribuição neuroanatômica, celular e biomolecular do sistema endocanabinoide adequa-se perfeitamente às suas funções de neuromodulação (via neuroplasticidade e metaplasticidade), nomeadamente em vias relacionadas aos transtornos por uso de substâncias. Os canabinoides exógenos perturbam essas funções. CONCLUSÃO: O sistema endocanabinoide contribui para a definição de setpoints em diversas vias neuronais, incluindo vias cruciais na instalação de transtornos por uso de substâncias; com o uso de Cannabis, esses setpoints tornar-se-ão mais permissivos, facilitando os transtornos por uso de Cannabis. Os avanços no entendimento da neurobiologia da Cannabis abrem uma janela de oportunidades para novas estratégias terapêuticas nos transtornos por uso de Cannabis.
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2011