886 resultados para Support Vector Machine (SVM)
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.
Resumo:
The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.
Resumo:
Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.
Resumo:
One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a novel background modeling system that uses a spatial grid of Support Vector Machines classifiers for segmenting moving objects, which is a key step in many video-based consumer applications. The system is able to adapt to a large range of dynamic background situations since no parametric model or statistical distribution are assumed. This is achieved by using a different classifier per image region that learns the specific appearance of that scene region and its variations (illumination changes, dynamic backgrounds, etc.). The proposed system has been tested with a recent public database, outperforming other state-of-the-art algorithms.
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.
Resumo:
Resumo:
Biology is now a “Big Data Science” thanks to technological advancements allowing the characterization of the whole macromolecular content of a cell or a collection of cells. This opens interesting perspectives, but only a small portion of this data may be experimentally characterized. From this derives the demand of accurate and efficient computational tools for automatic annotation of biological molecules. This is even more true when dealing with membrane proteins, on which my research project is focused leading to the development of two machine learning-based methods: BetAware-Deep and SVMyr. BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel proteins found in Gram-negative bacteria. These proteins are involved in many biological processes and primary candidates as drug targets. BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed to include the evolutionary information. BetAware-Deep outperformed all the available methods in topology prediction and reported high scores in the detection task. Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. SVMyr is a fast method based on support vector machines designed to predict this modification in dataset of proteomic scale. It uses as input octapeptides and exploits computational scores derived from experimental examples and mean physicochemical features. SVMyr outperformed all the available methods for co-translational myristoylation prediction. In addition, it allows (as a unique feature) the prediction of post-translational myristoylation. Both the tools here described are designed having in mind best practices for the development of machine learning-based tools outlined by the bioinformatics community. Moreover, they are made available via user-friendly web servers. All this make them valuable tools for filling the gap between sequential and annotated data.