912 resultados para Subsequent hydrolysis
Resumo:
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified beta -lactoglobulin, as substrates, and trypsin and a-chymotrypsin, as catalysts, at two temperatures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for alpha -chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze beta -lactoglobulin. Trypsin and alpha -chymotrypsin were stable at 40 degreesC, but a sharp decrease in the protease activity was observed at 55 degreesC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The acid catalyzed and ultrasound stimulated hydrolysis of solventless tetraethoxysilane-water mixtures was studied at 39°C as a function of HCl added to the mixtures (log[HCl]-1 ranged from 0.8 to 2.0), The reaction was carried out in a specially designed device, in which a steady state heat flow is maintained, while sonication is taking place, if no reaction is expected to occur. The exothermal hydrolysis reaction causes an increasing temperature (ΔTt) as a function of the reaction time, t. The isothermal hydrolysis rate constant, k, has been evaluated from the experimental ΔTt versus t data, after corrections for the increasing temperature effects, by using a method resulting from our theoretical modeling based on a dissolution and reaction mechanism. The hydrolysis rate constant fits closely a k α [H+] law as expected for this kind of hydrogen-ion catalyzed reaction.
Resumo:
The classic hydrolysis procedure for quantification of resin-bound aminoacyl and peptidyl groups with 12 N HCl: propionic acid was recvaluated by studying the influence of the nature of the resin and the resin-bound group. Their stability during acid hydrolysis was dependent on the C-terminal amino acid, and the order of acid stability was Phe > Val > Gly. Otherwise, the dipeptides Ala-Gly, Ala-Val, and Ala-Phe displayed enhanced rates of hydrolysis of the resin if compared with their parent aminoacyl groups. Amongthe resins assayed, the order of acid stability was: benzhydrylamine-resin > p-methylbenzhydrylamine-resin ≅4-(oxymethyl)-phenylacetamidomethyl-resin > chloromethyl-copolymer of styrene-1%-divinylbenzene. Important for peptide synthesis method, the findings demonstrate that longer hydrolysis times than previously recommended in the literature (1 h at 130°C and 15 min at 160°C for peptides attached to the chloromethyl-copolymer of styrene-1%-divinylbenzene) are necessary for the quantitative acid-catalyzed cleavage of some resin-bound groups. The observed broad range of hydrolysis time varied from less than 1 h to about 100 h.
Resumo:
The advantages and disadvantages of maintaining the periodontal ligament (PDL) in immediate replantation as well as chemical treatment of the root surface have been a matter of discussion because the vitality of such tissue in surgery is always questioned. This study evaluated the effects of conserving the tooth in sodium fluoride and the removal of the PDL before replantation of incisors in rats. There was more cementum-dentin resorption in the group with the PDL. The group without the PDL showed more discreet resorption, repair occurred through the newly formed bone tissue in the PDL space and ankylosis was more extensive than in the group with the PDL.
Resumo:
A critical revision of the literature was made regarding the stability of β-lactam antibiotics in the presence of surfactants. The factors involved in the drug decomposition were analyzed in the development of the discussion. The analysis has indicated that some organized systems obtained from surfactants can be used to control rates and mechanisms of antibiotic decomposition. These organized systems can also be used to obtain specific information about the drug reactivity in a microenvironment similar to the site of pharmacological effect.
Resumo:
The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The neutral hydrolysis reaction of post-consumer poly(ethylene terephthalate) in solid state was studied through the reaction of the polymer with water at the molar ratio 1:91 with autogenous pressure. Two sizes of post-consumer PET flakes and temperatures of 135 °C, 170°C and 205°C with pressures of 4.0 atm, 7.5 atm and 13.5 atm, respectively, were considered. With reaction time equal to 6h, the method reached 99% depolymerization at 205°C, 8.2% at 170 °C and 1.7% at 135°C. The reaction extension was measured by separating the terephthalic acid formed in the process and calculating by gravimetry how much material could still be reacted. Through the viscosimetry of diluted, solutions and the counting of carboxylic end groups in the remaining material from the gravimetric assay, it was possible to suggest that the reaction occurs randomly and in the whole volume of the polymeric particle and not solely on the surface. The terephthalic acid obtained and then purified was characterized by elemental analysis, magnetic nuclear resonance, size and panicle size distribution and spectrophotometry in the visible spectrum, and it was similar to the petrochemical equivalent, with purity recorded in carbon base equal to 99.9%.
Resumo:
Purpose: This study evaluated the long-term effects of orthognathic surgery on subsequent growth of the maxillomandibular complex in the young cleft patient. Patients and Methods: We evaluated 12 young cleft patients (9 male and 3 female patients), with a mean age of 12 years 6 months (range, 9 years 8 months to 15 years 4 months), who underwent Le Fort I osteotomies, with maxillary advancement, expansion, and/or downgrafting, by use of autogenous bone or hydroxyapatite grafts, when indicated, for maxillary stabilization. Five patients had concomitant osteotomies of the mandibular ramus. All patients had presurgical and postsurgical orthodontic treatment to control the occlusion. Radiographs taken at initial evaluation (T1) and presurgery (T2) were compared to establish the facial growth vector before surgery, whereas radiographs taken immediately postsurgery (T3) and at longest follow-up (T4) were used to determine postsurgical growth. Each patient's lateral cephalograms were traced, and 16 landmarks were identified and used to compute 11 measurements describing presurgical and postsurgical growth. Results: Before surgery, all patients had relatively normal growth. After surgery, cephalograms showed statistically significant growth changes from T3 to T4, with the maxillary depth decreasing by -3.3° ± 1.8°, Sella-nasion-point A by -3.3° ± 1.8°, and point A-nasion-point B by -3.6° ± 2.8°. The angulation of the maxillary incisors increased by 9.2° ± 11.7°. Of 12 patients, 11 showed disproportionate postsurgical jaw growth. Maxillary growth occurred predominantly in a vertical vector with no anteroposterior growth, even though most patients had shown anteroposterior growth before surgery. The distance increased in the linear measurement from nasion to gnathion by 10.3 ± 7.9 mm. Four of 5 patients operated on during the mixed dentition phase had teeth that erupted through the cleft area. A variable impairment of postoperative growth was seen with the 2 types of grafting material used. No significant difference was noted in the effect on growth in patients with unilateral clefts versus those with bilateral clefts. The presence of a pharyngeal flap was noted to adversely affect growth, whereas simultaneous mandibular surgery did not. After surgery, 11 of 12 patients tended toward a Class III end-on occlusal relation. Conclusions: Orthognathic surgery may be performed on growing cleft patients when mandated by psychological and/or functional concerns. The surgeon must be cognizant of the adverse postsurgical growth outcomes when performing orthognathic surgery on growing cleft patients with the possibility for further surgery requirements. Performing maxillary osteotomies on cleft patients would be more predictable after completion of facial growth. © 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.