942 resultados para Stochastic simulation algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many attempts have already been made to detect exomoons around transiting exoplanets, but the first confirmed discovery is still pending. The experiences that have been gathered so far allow us to better optimize future space telescopes for this challenge already during the development phase. In this paper we focus on the forthcoming CHaraterising ExOPlanet Satellite (CHEOPS), describing an optimized decision algorithm with step-by-step evaluation, and calculating the number of required transits for an exomoon detection for various planet moon configurations that can be observable by CHEOPS. We explore the most efficient way for such an observation to minimize the cost in observing time. Our study is based on PTV observations (photocentric transit timing variation) in simulated CHEOPS data, but the recipe does not depend on the actual detection method, and it can be substituted with, e.g., the photodynamical method for later applications. Using the current state-of-the-art level simulation of CHEOPS data we analyzed transit observation sets for different star planet moon configurations and performed a bootstrap analysis to determine their detection statistics. We have found that the detection limit is around an Earth-sized moon. In the case of favorable spatial configurations, systems with at least a large moon and a Neptune-sized planet, an 80% detection chance requires at least 5-6 transit observations on average. There is also a nonzero chance in the case of smaller moons, but the detection statistics deteriorate rapidly, while the necessary transit measurements increase quickly. After the CoRoT and Kepler spacecrafts, CHEOPS will be the next dedicated space telescope that will observe exoplanetary transits and characterize systems with known Doppler-planets. Although it has a smaller aperture than Kepler (the ratio of the mirror diameters is about 1/3) and is mounted with a CCD that is similar to Kepler's, it will observe brighter stars and operate with larger sampling rate; therefore, the detection limit for an exomoon can be the same as or better, which will make CHEOPS a competitive instruments in the quest for exomoons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The social processes that lead to destructive behavior in celebratory crowds can be studied through an agent-based computer simulation. Riots are an increasingly common outcome of sports celebrations, and pose the potential for harm to participants, bystanders, property, and the reputation of the groups with whom participants are associated. Rioting cannot necessarily be attributed to the negative emotions of individuals, such as anger, rage, frustration and despair. For instance, the celebratory behavior (e.g., chanting, cheering, singing) during UConn’s “Spring Weekend” and after the 2004 NCAA Championships resulted in several small fires and overturned cars. Further, not every individual in the area of a riot engages in violence, and those who do, do not do so continuously. Instead, small groups carry out the majority of violent acts in relatively short-lived episodes. Agent-based computer simulations are an ideal method for modeling complex group-level social phenomena, such as celebratory gatherings and riots, which emerge from the interaction of relatively “simple” individuals. By making simple assumptions about individuals’ decision-making and behaviors and allowing actors to affect one another, behavioral patterns emerge that cannot be predicted by the characteristics of individuals. The computer simulation developed here models celebratory riot behavior by repeatedly evaluating a single algorithm for each individual, the inputs of which are affected by the characteristics of nearby actors. Specifically, the simulation assumes that (a) actors possess 1 of 5 distinct social identities (group memberships), (b) actors will congregate with actors who possess the same identity, (c) the degree of social cohesion generated in the social context determines the stability of relationships within groups, and (d) actors’ level of aggression is affected by the aggression of other group members. Not only does this simulation provide a systematic investigation of the effects of the initial distribution of aggression, social identification, and cohesiveness on riot outcomes, but also an analytic tool others may use to investigate, visualize and predict how various individual characteristics affect emergent crowd behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, steady economic growth rates have been kept in Poland and Hungary. Money supplies are growing rather rapidly in these economies. In large, exchange rates have trends of depreciation. Then, exports and prices show the steady growth rates. It can be thought that per capita GDPs are in the same level and development stages are similar in these two countries. It is assumed that these two economies have the same export market and export goods are competing in it. If one country has an expansion of monetary policy, price increase and interest rate decrease. Then, exchange rate decrease. Exports and GDP will increase through this phenomenon. At the same time, this expanded monetary policy affects another country through the trade. This mutual relationship between two countries can be expressed by the Nash-equilibrium in the Game theory. In this paper, macro-econometric models of Polish and Hungarian economies are built and the Nash- equilibrium is introduced into them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy management has always been recognized as a challenge in mobile systems, especially in modern OS-based mobile systems where multi-functioning are widely supported. Nowadays, it is common for a mobile system user to run multiple applications simultaneously while having a target battery lifetime in mind for a specific application. Traditional OS-level power management (PM) policies make their best effort to save energy under performance constraint, but fail to guarantee a target lifetime, leaving the painful trading off between the total performance of applications and the target lifetime to the user itself. This thesis provides a new way to deal with the problem. It is advocated that a strong energy-aware PM scheme should first guarantee a user-specified battery lifetime to a target application by restricting the average power of those less important applications, and in addition to that, maximize the total performance of applications without harming the lifetime guarantee. As a support, energy, instead of CPU or transmission bandwidth, should be globally managed as the first-class resource by the OS. As the first-stage work of a complete PM scheme, this thesis presents the energy-based fair queuing scheduling, a novel class of energy-aware scheduling algorithms which, in combination with a mechanism of battery discharge rate restricting, systematically manage energy as the first-class resource with the objective of guaranteeing a user-specified battery lifetime for a target application in OS-based mobile systems. Energy-based fair queuing is a cross-application of the traditional fair queuing in the energy management domain. It assigns a power share to each task, and manages energy by proportionally serving energy to tasks according to their assigned power shares. The proportional energy use establishes proportional share of the system power among tasks, which guarantees a minimum power for each task and thus, avoids energy starvation on any task. Energy-based fair queuing treats all tasks equally as one type and supports periodical time-sensitive tasks by allocating each of them a share of system power that is adequate to meet the highest energy demand in all periods. However, an overly conservative power share is usually required to guarantee the meeting of all time constraints. To provide more effective and flexible support for various types of time-sensitive tasks in general purpose operating systems, an extra real-time friendly mechanism is introduced to combine priority-based scheduling into the energy-based fair queuing. Since a method is available to control the maximum time one time-sensitive task can run with priority, the power control and time-constraint meeting can be flexibly traded off. A SystemC-based test-bench is designed to assess the algorithms. Simulation results show the success of the energy-based fair queuing in achieving proportional energy use, time-constraint meeting, and a proper trading off between them. La gestión de energía en los sistema móviles está considerada hoy en día como un reto fundamental, notándose, especialmente, en aquellos terminales que utilizando un sistema operativo implementan múltiples funciones. Es común en los sistemas móviles actuales ejecutar simultaneamente diferentes aplicaciones y tener, para una de ellas, un objetivo de tiempo de uso de la batería. Tradicionalmente, las políticas de gestión de consumo de potencia de los sistemas operativos hacen lo que está en sus manos para ahorrar energía y satisfacer sus requisitos de prestaciones, pero no son capaces de proporcionar un objetivo de tiempo de utilización del sistema, dejando al usuario la difícil tarea de buscar un compromiso entre prestaciones y tiempo de utilización del sistema. Esta tesis, como contribución, proporciona una nueva manera de afrontar el problema. En ella se establece que un esquema de gestión de consumo de energía debería, en primer lugar, garantizar, para una aplicación dada, un tiempo mínimo de utilización de la batería que estuviera especificado por el usuario, restringiendo la potencia media consumida por las aplicaciones que se puedan considerar menos importantes y, en segundo lugar, maximizar las prestaciones globales sin comprometer la garantía de utilización de la batería. Como soporte de lo anterior, la energía, en lugar del tiempo de CPU o el ancho de banda, debería gestionarse globalmente por el sistema operativo como recurso de primera clase. Como primera fase en el desarrollo completo de un esquema de gestión de consumo, esta tesis presenta un algoritmo de planificación de encolado equitativo (fair queueing) basado en el consumo de energía, es decir, una nueva clase de algoritmos de planificación que, en combinación con mecanismos que restrinjan la tasa de descarga de una batería, gestionen de forma sistemática la energía como recurso de primera clase, con el objetivo de garantizar, para una aplicación dada, un tiempo de uso de la batería, definido por el usuario, en sistemas móviles empotrados. El encolado equitativo de energía es una extensión al dominio de la energía del encolado equitativo tradicional. Esta clase de algoritmos asigna una reserva de potencia a cada tarea y gestiona la energía sirviéndola de manera proporcional a su reserva. Este uso proporcional de la energía garantiza que cada tarea reciba una porción de potencia y evita que haya tareas que se vean privadas de recibir energía por otras con un comportamiento más ambicioso. Esta clase de algoritmos trata a todas las tareas por igual y puede planificar tareas periódicas en tiempo real asignando a cada una de ellas una reserva de potencia que es adecuada para proporcionar la mayor de las cantidades de energía demandadas por período. Sin embargo, es posible demostrar que sólo se consigue cumplir con los requisitos impuestos por todos los plazos temporales con reservas de potencia extremadamente conservadoras. En esta tesis, para proporcionar un soporte más flexible y eficiente para diferentes tipos de tareas de tiempo real junto con el resto de tareas, se combina un mecanismo de planificación basado en prioridades con el encolado equitativo basado en energía. En esta clase de algoritmos, gracias al método introducido, que controla el tiempo que se ejecuta con prioridad una tarea de tiempo real, se puede establecer un compromiso entre el cumplimiento de los requisitos de tiempo real y el consumo de potencia. Para evaluar los algoritmos, se ha diseñado en SystemC un banco de pruebas. Los resultados muestran que el algoritmo de encolado equitativo basado en el consumo de energía consigue el balance entre el uso proporcional a la energía reservada y el cumplimiento de los requisitos de tiempo real.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cébalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model to an economic optimisation model. A crop growth simulation model (CropSyst) was used to build a database to determine the relationships between agricultural practices, crop yields and environmental effects (salt accumulation in soil and leaching of nitrates) in a context of high climatic variability. The database was then fed into a recursive stochastic model set for a 10-year plan that allowed analysing the effects of cropping patterns on farm income, salt accumulation and nitrate leaching. We assumed that the long-term sustainability of soil productivity might be in conflict with farm profitability in the short-term. Assuming a discount rate of 10% (for the base scenario), the model closely reproduced the current system and allowed to predict the degradation of soil quality due to long-term salt accumulation. The results showed that there was more accumulation of salt in the soil for the base scenario than for the alternative scenario (discount rate of 0%). This result was induced by applying a higher quantity of water per hectare for the alternative as compared to a base scenario. The results also showed that nitrogen leaching is very low for the two discount rates and all climate scenarios. In conclusion, the results show that the difference in farm income between the alternative and base scenarios increases over time to attain 45% after 10 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target regions, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. Our proposition reduces, or even eliminates, infrastructure cost and human efforts during the construction of realistic 3D scenes used in radio propagation modeling. In addition, the results obtained from our propagation model proves to be both accurate and efficient

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis realiza una contribución metodológica al problema de la gestión óptima de embalses hidroeléctricos durante eventos de avenidas, considerando un enfoque estocástico y multiobjetivo. Para ello se propone una metodología de evaluación de estrategias de laminación en un contexto probabilístico y multiobjetivo. Además se desarrolla un entorno dinámico de laminación en tiempo real con pronósticos que combina un modelo de optimización y algoritmos de simulación. Estas herramientas asisten a los gestores de las presas en la toma de decisión respecto de cuál es la operación más adecuada del embalse. Luego de una detallada revisión de la bibliografía, se observó que los trabajos en el ámbito de la gestión óptima de embalses en avenidas utilizan, en general, un número reducido de series de caudales o hidrogramas para caracterizar los posibles escenarios. Limitando el funcionamiento satisfactorio de un modelo determinado a situaciones hidrológicas similares. Por otra parte, la mayoría de estudios disponibles en este ámbito abordan el problema de la laminación en embalses multipropósito durante la temporada de avenidas, con varios meses de duración. Estas características difieren de la realidad de la gestión de embalses en España. Con los avances computacionales en materia de gestión de información en tiempo real, se observó una tendencia a la implementación de herramientas de operación en tiempo real con pronósticos para determinar la operación a corto plazo (involucrando el control de avenidas). La metodología de evaluación de estrategias propuesta en esta tesis se basa en determinar el comportamiento de éstas frente a un espectro de avenidas características de la solicitación hidrológica. Con ese fin, se combina un sistema de evaluación mediante indicadores y un entorno de generación estocástica de avenidas, obteniéndose un sistema implícitamente estocástico. El sistema de evaluación consta de tres etapas: caracterización, síntesis y comparación, a fin de poder manejar la compleja estructura de datos resultante y realizar la evaluación. En la primera etapa se definen variables de caracterización, vinculadas a los aspectos que se quieren evaluar (seguridad de la presa, control de inundaciones, generación de energía, etc.). Estas variables caracterizan el comportamiento del modelo para un aspecto y evento determinado. En la segunda etapa, la información de estas variables se sintetiza en un conjunto de indicadores, lo más reducido posible. Finalmente, la comparación se lleva a cabo a partir de la comparación de esos indicadores, bien sea mediante la agregación de dichos objetivos en un indicador único, o bien mediante la aplicación del criterio de dominancia de Pareto obteniéndose un conjunto de soluciones aptas. Esta metodología se aplicó para calibrar los parámetros de un modelo de optimización de embalse en laminación y su comparación con otra regla de operación, mediante el enfoque por agregación. Luego se amplió la metodología para evaluar y comparar reglas de operación existentes para el control de avenidas en embalses hidroeléctricos, utilizando el criterio de dominancia. La versatilidad de la metodología permite otras aplicaciones, tales como la determinación de niveles o volúmenes de seguridad, o la selección de las dimensiones del aliviadero entre varias alternativas. Por su parte, el entorno dinámico de laminación al presentar un enfoque combinado de optimización-simulación, permite aprovechar las ventajas de ambos tipos de modelos, facilitando la interacción con los operadores de las presas. Se mejoran los resultados respecto de los obtenidos con una regla de operación reactiva, aun cuando los pronósticos se desvían considerablemente del hidrograma real. Esto contribuye a reducir la tan mencionada brecha entre el desarrollo teórico y la aplicación práctica asociada a los modelos de gestión óptima de embalses. This thesis presents a methodological contribution to address the problem about how to operate a hydropower reservoir during floods in order to achieve an optimal management considering a multiobjective and stochastic approach. A methodology is proposed to assess the flood control strategies in a multiobjective and probabilistic framework. Additionally, a dynamic flood control environ was developed for real-time operation, including forecasts. This dynamic platform combines simulation and optimization models. These tools may assist to dam managers in the decision making process, regarding the most appropriate reservoir operation to be implemented. After a detailed review of the bibliography, it was observed that most of the existing studies in the sphere of flood control reservoir operation consider a reduce number of hydrographs to characterize the reservoir inflows. Consequently, the adequate functioning of a certain strategy may be limited to similar hydrologic scenarios. In the other hand, most of the works in this context tackle the problem of multipurpose flood control operation considering the entire flood season, lasting some months. These considerations differ from the real necessity in the Spanish context. The implementation of real-time reservoir operation is gaining popularity due to computational advances and improvements in real-time data management. The methodology proposed in this thesis for assessing the strategies is based on determining their behavior for a wide range of floods, which are representative of the hydrological forcing of the dam. An evaluation algorithm is combined with a stochastic flood generation system to obtain an implicit stochastic analysis framework. The evaluation system consists in three stages: characterizing, synthesizing and comparing, in order to handle the complex structure of results and, finally, conduct the evaluation process. In the first stage some characterization variables are defined. These variables should be related to the different aspects to be evaluated (such as dam safety, flood protection, hydropower, etc.). Each of these variables characterizes the behavior of a certain operating strategy for a given aspect and event. In the second stage this information is synthesized obtaining a reduced group of indicators or objective functions. Finally, the indicators are compared by means of an aggregated approach or by a dominance criterion approach. In the first case, a single optimum solution may be achieved. However in the second case, a set of good solutions is obtained. This methodology was applied for calibrating the parameters of a flood control model and to compare it with other operating policy, using an aggregated method. After that, the methodology was extent to assess and compared some existing hydropower reservoir flood control operation, considering the Pareto approach. The versatility of the method allows many other applications, such as determining the safety levels, defining the spillways characteristics, among others. The dynamic framework for flood control combines optimization and simulation models, exploiting the advantages of both techniques. This facilitates the interaction between dam operators and the model. Improvements are obtained applying this system when compared with a reactive operating policy, even if the forecasts deviate significantly from the observed hydrograph. This approach contributes to reduce the gap between the theoretical development in the field of reservoir management and its practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target region, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. By comparing with other methods, the work presented in this paper makes contributions on reducing human efforts and cost in constructing 3D scene; moreover, the developed propagation model proves its potential in both accuracy and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.