988 resultados para Statistical tools
Resumo:
Tese de Doutoramento em Ciências da Administração
Resumo:
In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in -carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis--carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (redfleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.
Resumo:
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
Resumo:
Dissertação de mestrado Engenharia e Gestão da Qualidade
Resumo:
Tese de Doutoramento em Ciências Empresariais
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
Dissertação de mestrado em Estatística
Resumo:
Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.
Resumo:
El presente proyecto se plantea el siguiente problema de investigación:¿Cuál es la eficacia de los entornos virtuales de enseñanza para optimizar los aprendizajes de Química? Se sostiene la hipótesis de que los entornos virtuales de enseñanza, empleados como mediación instrumental, son eficaces para optimizar los aprendizajes de química, particularmente facilitando la vinculación y reversibilidad entre "mundo micro y macroscópico"; capacidad que usualmente sólo se atribuye al trabajo experimental de laboratorio. Los objetivos propuestos son: Determinar la eficacia de entornos virtuales de enseñanza, como mediaciones instrumentales, para optimizar los aprendizajes de química en estudiantes de ingeniería. Implementar un entrono virtual de enseñanza de química, diseñado como mediación instrumental y destinado a estudiantes de dos carreras de ingeniería del IUA. Evaluar el desarrollo y los resultados de la innovación introducida. Comparar los resultados de la innovación con los resultados de la enseñanza usual. Derivar conclusiones acerca de la eficacia de la innovación propuesta. Socializar el conocimiento producido en ámbitos científico-tecnológicos reconocidos. Se generará un aula virtual en plataforma Educativa y utilidzando el laboratorio de computación de la institución se buscará desarrollar laboratorios virtuales donde se propondrán actividades de simulación de trabajo experimental. Los resultados esperados son: - Un Aula Virtual que cumpla funciones análogas a las de un laboratorio experimental. - Información válida y confiable acerca de la eficacia de la misma como medio para optimizar los aprendizajes de química. - Publicaciones en ámbitos científico-tecnológicos reconocidos que sometan a juicio público la innovación y la investigación efectuadas. La importancia del proyecto radica principalmente en poner a prueba la eficacia de los entornos virtuales para optimizar los aprendizajes de química, analogando tareas usualmente limitadas al trabajo experimental de laboratorio. Su pertinencia apunta a un replanteo del curriculo de los cursos de Química para estudiantes de Ingeniería.
Resumo:
This study utilised recent developments in forensic aromatic hydrocarbon fingerprint analysis to characterise and identify specific biogenic, pyrogenic and petrogenic contamination. The fingerprinting and data interpretation techniques discussed include the recognition of: The distribution patterns of hydrocarbons (alkylated naphthalene, phenanthrene, dibenzothiophene, fluorene, chrysene and phenol isomers), • Analysis of “source-specific marker” compounds (individual saturated hydrocarbons, including n-alkanes (n-C5 through 0-C40) • Selected benzene, toluene, ethylbenzene and xylene isomers (BTEX), • The recalcitrant isoprenoids; pristane and phytane and • The determination of diagnostic ratios of specific petroleum / non-petroleum constituents, and the application of various statistical and numerical analysis tools. An unknown sample from the Irish Environmental Protection Agency (EPA) for origin characterisation was subjected to analysis by gas chromatography utilising both flame ionisation and mass spectral detection techniques in comparison to known reference materials. The percentage of the individual Polycyclic Aromatic Hydrocarbons (PAIIs) and biomarker concentrations in the unknown sample were normalised to the sum of the analytes and the results were compared with the corresponding results with a range of reference materials. In addition, to the determination of conventional diagnostic PAH and biomarker ratios, a number of “source-specific markers” isomeric PAHs within the same alkylation levels were determined, and their relative abundance ratios were computed in order to definitively identify and differentiate the various sources. Statistical logarithmic star plots were generated from both sets of data to give a pictorial representation of the comparison between the unknown sample and reference products. The study successfully characterised the unknown sample as being contaminated with a “coal tar” and clearly demonstrates the future role of compound ratio analysis (CORAT) in the identification of possible source contaminants.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.