917 resultados para Statistical Robustness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa Individual Income Tax Statistical Report 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary purpose of this brief is to provide various statistical and institutional details on the development and current status of the public agricultural research system in Cape Verde. This information has been collected and presented in a systematic way in order to inform and thereby improve research policy formulation with regard to the Cape Verdean NARS. Most importantly, these data are assembled and reported in a way that makes them directly comparable with the data presented in the other country briefs in this series. And because institutions take time to develop and there are often considerable lags in the agricultural research process, it is necessary for many analytical and policy purposes to have access to longer-run series of data. NARSs vary markedly in their institutional structure and these institutional aspects can have a substantial and direct effect on their research performance. To provide a basis for analysis and cross-country, over-time comparisons, the various research agencies in a country have been grouped into five general categories; government, semi-public, private, academic, and supranational. A description of these categories is provided in table 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary purpose of this brief is to provide various statistical and institutional details on the development and current status of the public agricultural research system in Cape Verde. This information has been collected and presented in a systematic way in order to inform and thereby improve research policy formulation with regard to the Cape Verdean NARS. Most importantly, these data are assembled and reported in a way that makes them directly comparable with the data presented in the other country briefs in this series. And because institutions take time to develop and there are often considerable lags in the agricultural research process, it is necessary for many analytical and policy purposes to have access to longer-run series of data. NARSs vary markedly in their institutional structure and these institutional aspects can have a substantial and direct effect on their research performance. To provide a basis for analysis and cross-country, over-time comparisons, the various research agencies in a country have been grouped into five general categories; government, semi-public, private, academic, and supranational. A description of these categories is provided in table 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.