923 resultados para Side pixel registration
Resumo:
In a typical shoeprint classification and retrieval system, the first step is to segment meaningful basic shapes and patterns in a noisy shoeprint image. This step has significant influence on shape descriptors and shoeprint indexing in the later stages. In this paper, we extend a recently developed denoising technique proposed by Buades, called non-local mean filtering, to give a more general model. In this model, the expected result of an operation on a pixel can be estimated by performing the same operation on all of its reference pixels in the same image. A working pixel’s reference pixels are those pixels whose neighbourhoods are similar to the working pixel’s neighbourhood. Similarity is based on the correlation between the local neighbourhoods of the working pixel and the reference pixel. We incorporate a special instance of this general case into thresholding a very noisy shoeprint image. Visual and quantitative comparisons with two benchmarking techniques, by Otsu and Kittler, are conducted in the last section, giving evidence of the effectiveness of our method for thresholding noisy shoeprint images.
Resumo:
A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.
Resumo:
A side-fed bifilar is shown to generate a similar radiation pattern as a dipole antenna, but the structure has a significantly reduced axial length. Simulated and measured results show that the helix turn angle can be used to control the ratio of the orthogonal linear field components and the input impedance.
Resumo:
Background: The incidence of type 1 diabetes in children younger than 15 years is increasing. Prediction of future incidence of this disease will enable adequate fund allocation for delivery of care to be planned. We aimed to establish 15-year incidence trends for childhood type 1 diabetes in European centres, and thereby predict the future burden of childhood diabetes in Europe.
Methods: 20 population-based EURODIAB registers in 17 countries registered 29 311 new cases of type 1 diabetes, diagnosed in children before their 15th birthday during a 15-year period, 1989–2003. Age-specific log linear rates of increase were estimated in five geographical regions, and used in conjunction with published incidence rates and population projections to predict numbers of new cases throughout Europe in 2005, 2010, 2015, and 2020.
Findings: Ascertainment was better than 90% in most registers. All but two registers showed significant yearly increases in incidence, ranging from 0·6% to 9·3%. The overall annual increase was 3·9% (95% CI 3·6–4·2), and the increases in the age groups 0–4 years, 5–9 years, and 10–14 years were 5·4% (4·8–6·1), 4·3% (3·8–4·8), and 2·9% (2·5–3·3), respectively. The number of new cases in Europe in 2005, is estimated as 15 000, divided between the 0–4 year, 5–9 year, and 10–14 year age-groups in the ratio 24%, 35%, and 41%, respectively. In 2020, the predicted number of new cases is 24 000, with a doubling in numbers in children younger than 5 years and a more even distribution across age-groups than at present (29%, 37%, and 34%, respectively). Prevalence under age 15 years is predicted to rise from 94 000 in 2005, to 160 000 in 2020.
Interpretation: If present trends continue, doubling of new cases of type 1 diabetes in European children younger than 5 years is predicted between 2005 and 2020, and prevalent cases younger than 15 years will rise by 70%. Adequate health-care resources to meet these children’s needs should be made available.
Resumo:
This paper proposes a coordinated control of the rotor and grid side converters (RSC & GSC) of doubly-fed induction generator (DFIG) based wind generation systems under unbalanced voltage conditions. System behaviors and operations of the RSC and GSC under unbalanced voltage are illustrated. To provide enhanced operation, the RSC is controlled to eliminate the torque oscillations at double supply frequency under unbalanced stator supply. The oscillation of the stator output active power is then cancelled by the active power output from the GSC, to ensure constant active power output from the overall DFIG generation system. To provide the required positive and negative sequence currents control for the RSC and GSC, a current control strategy containing a main controller and an auxiliary controller is analyzed. The main controller is implemented in the positive (dq)+ frame without involving positive/negative sequence decomposition whereas the auxiliary controller is implemented in the negative sequence (dq)? frame with negative sequence current extracted. Simulation results using EMTDC/PSCAD are presented for a 2MW DFIG wind generation system to validate the proposed control scheme and to show the enhanced system operation during unbalanced voltage supply.