823 resultados para Sequential Mapping
Resumo:
The hypothesis was tested that oral antibiotic treatment in children with acute pyelonephritis and scintigraphy-documented lesions is equally as efficacious as sequential intravenous/oral therapy with respect to the incidence of renal scarring. A randomised multi-centre trial was conducted in 365 children aged 6 months to 16 years with bacterial growth in cultures from urine collected by catheter. The children were assigned to receive either oral ceftibuten (9 mg/kg once daily) for 14 days or intravenous ceftriaxone (50 mg/kg once daily) for 3 days followed by oral ceftibuten for 11 days. Only patients with lesions detected on acute-phase dimercaptosuccinic acid (DMSA) scintigraphy underwent follow-up scintigraphy. Efficacy was evaluated by the rate of renal scarring after 6 months on follow-up scintigraphy. Of 219 children with lesions on acute-phase scintigraphy, 152 completed the study; 80 (72 females, median age 2.2 years) were given ceftibuten and 72 (62 females, median age 1.6 years) were given ceftriaxone/ceftibuten. Patients in the intravenous/oral group had significantly higher C-reactive protein (CRP) concentrations at baseline and larger lesion(s) on acute-phase scintigraphy. Follow-up scintigraphy showed renal scarring in 21/80 children treated with ceftibuten and 33/72 with ceftriaxone/ceftibuten (p = 0.01). However, after adjustment for the confounding variables (CRP and size of acute-phase lesion), no significant difference was observed for renal scarring between the two groups (p = 0.2). Renal scarring correlated with the extent of the acute-phase lesion (r = 0.60, p < 0.0001) and the grade of vesico-ureteric reflux (r = 0.31, p = 0.03), and was more frequent in refluxing renal units (p = 0.04). The majority of patients, i.e. 44 in the oral group and 47 in the intravenous/oral group, were managed as out-patients. Side effects were not observed. From this study, we can conclude that once-daily oral ceftibuten for 14 days yielded comparable results to sequential ceftriaxone/ceftibuten treatment in children aged 6 months to 16 years with DMSA-documented acute pyelonephritis and it allowed out-patient management in the majority of these children.
Resumo:
The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
(from the journal abstract) Scientific interest for the concept of alliance has been maintained and stimulated by repeated findings that a strong alliance is associated with facilitative treatment process and favourable treatment outcome. However, because the alliance is not in itself a therapeutic technique, these findings were unsuccessful in bringing about significant improvements in clinical practice. An essential issue in modern psychotherapeutic research concerns the relation between common factors which are known to explain great variance in empirical results and the specific therapeutic techniques which are the primary basis of clinical training and practice. This pilot study explored sequences in therapist interventions over four sessions of brief psychodynamic investigation. It aims at determining if patterns of interventions can be found during brief psychodynamic investigation and if these patterns can be associated with differences in the therapeutic alliance. Therapist interventions where coded using the Psychodynamic Intervention Rating Scale (PIRS) which enables the classification of each therapist utterance into one of 9 categories of interpretive interventions (defence interpretation, transference interpretation), supportive interventions (question, clarification, association, reflection, supportive strategy) or interventions about the therapeutic frame (work-enhancing statement, contractual arrangement). Data analysis was done using lag sequential analysis, a statistical procedure which identifies contingent relationships in time among a large number of behaviours. The sample includes N = 20 therapist-patient dyads assigned to three groups with: (1) a high and stable alliance profile, (2) a low and stable alliance profile and (3) an improving alliance profile. Results suggest that therapists most often have one single intention when interacting with patients. Large sequences of questions, associations and clarifications were found, which indicate that if a therapist asks a question, clarifies or associates, there is a significant probability that he will continue doing so. A single theme sequence involving frame interventions was also observed. These sequences were found in all three alliance groups. One exception was found for mixed sequences of interpretations and supportive interventions. The simultaneous use of these two interventions was associated with a high or an improving alliance over the course of treatment, but not with a low and stable alliance where only single theme sequences of interpretations were found. In other words, in this last group, therapists were either supportive or interpretative, whereas with high or improving alliance, interpretations were always given along with supportive interventions. This finding provides evidence that examining therapist interpretation individually can only yield incomplete findings. How interpretations were given is important for alliance building. It also suggests that therapists should carefully dose their interpretations and be supportive when necessary in order to build a strong therapeutic alliance. And from a research point of view, to study technical interventions, we must look into dynamic variables such as dosage, the supportive quality of an intervention, and timing. (PsycINFO Database Record (c) 2005 APA, all rights reserved)
Resumo:
IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.
Resumo:
Continuous field mapping has to address two conflicting remote sensing requirements when collecting training data. On one hand, continuous field mapping trains fractional land cover and thus favours mixed training pixels. On the other hand, the spectral signature has to be preferably distinct and thus favours pure training pixels. The aim of this study was to evaluate the sensitivity of training data distribution along fractional and spectral gradients on the resulting mapping performance. We derived four continuous fields (tree, shrubherb, bare, water) from aerial photographs as response variables and processed corresponding spectral signatures from multitemporal Landsat 5 TM data as explanatory variables. Subsequent controlled experiments along fractional cover gradients were then based on generalised linear models. Resulting fractional and spectral distribution differed between single continuous fields, but could be satisfactorily trained and mapped. Pixels with fractional or without respective cover were much more critical than pure full cover pixels. Error distribution of continuous field models was non-uniform with respect to horizontal and vertical spatial distribution of target fields. We conclude that a sampling for continuous field training data should be based on extent and densities in the fractional and spectral, rather than the real spatial space. Consequently, adequate training plots are most probably not systematically distributed in the real spatial space, but cover the gradient and covariate structure of the fractional and spectral space well. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.