972 resultados para Sequent Calculus
Resumo:
The Online Mathematics Education Project (MatActiva) is an exciting new initiative which aims to support and enhance mathematics education. The project is led by the Institute of Accounting and Administration of Porto (ISCAP), part of the Polytechnic Institute of Porto (IPP). It provides innovative resources and carefully constructed materials around themes such as Elementary Mathematics, Calculus, Algebra, Statistics and Financial Mathematics to help support and inspire students and teachers of mathematics. The goal is to increase mathematical understanding, confidence and enjoyment, enrich the mathematical experience of each person, and promote creative and imaginative approaches to mathematics. Furthermore the project can be used to deliver engaging and effective mathematics instruction through the flipped classroom model. This paper also presents the findings of a large survey, whose propose was to study the student’s reaction to the project.
Resumo:
A Era Tecnológica em que nos vemos inseridos, cujos avanços acontecem a uma velocidade vertiginosa exige, por parte das Instituições de Ensino Superior (IES) uma atitude proactiva no sentido de utilização dos muitos recursos disponíveis. Por outro lado, os elementos próprios da sociedade da informação – flexibilidade, formação ao longo da vida, acessibilidade à informação, mobilidade, entre muito outros – atuam como fortes impulsionadores externos para que as IES procurem e analisem novas modalidades formativas. Perante a mobilidade crescente, que se tem revelado massiva, a aprendizagem tende a ser cada vez mais individualizada, visual e prática. A conjugação de várias formas/tipologias de transmissão de conhecimento, de métodos didáticos e mesmo de ambientes e situações de aprendizagem induzem uma melhor adaptação do estudante, que poderá procurar aqueles que melhor vão ao encontro das suas expetativas, isto é, favorecem um processo de ensino-aprendizagem eficiente na perspetiva da forma de aprender de cada um. A definição de políticas estratégicas relacionadas com novas modalidades de ensino/formação tem sido uma preocupação constante na nossa instituição, nomeadamente no domínio do ensino à distância, seja ele e-Learning, b-Learning ou, mais recentemente, “open-Learning”, onde se inserem os MOOC – Massive Open Online Courses (não esquecendo a vertente m-Learning), de acordo com as várias tendências europeias (OECD, 2007) (Comissão Europeia, 2014) e com os objetivos da “Europa 2020”. Neste sentido surge o Projeto Matemática 100 STRESS, integrado no projeto e-IPP | Unidade de e-Learning do Politécnico do Porto que criou a sua plataforma MOOC, abrindo em junho de 2014 o seu primeiro curso – Probabilidades e Combinatória. Pretendemos dar a conhecer este Projeto, e em particular este curso, que envolveu vários docentes de diferentes unidades orgânicas do IPP.
Resumo:
O projeto realizado teve como tema a aplicação das derivadas e integrais fraccionários para a implementação de filtros digitais numa perspetiva de processamento digital de sinais. Numa primeira fase do trabalho, é efetuado uma abordagem teórica sobre os filtros digitais e o cálculo fraccionário. Estes conceitos teóricos são utilizados posteriormente para o desenvolvimento do presente projeto. Numa segunda fase, é desenvolvida uma interface gráfica em ambiente MatLab, utilizando a ferramenta GUIDE. Esta interface gráfica tem como objetivo a implementação de filtros digitais fraccionários. Na terceira fase deste projeto são implementados os filtros desenvolvidos experimentalmente através do ADSP-2181, onde será possível analisar e comparar os resultados experimentais com os resultados obtidos por simulação no MatLab. Como quarta e última fase deste projeto é efetuado uma reflexão sobre todo o desenvolvimento da Tese e o que esta me proporcionou. Com este relatório pretendo apresentar todo o esforço aplicado na realização deste trabalho, bem como alguns dos conhecimentos adquiridos ao longo do curso.
Resumo:
Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.
Resumo:
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.
Resumo:
This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.
Resumo:
Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional “parasitic” elements. The novel γ-junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.
Resumo:
Inspired in dynamic systems theory and Brewer’s contributions to apply it to economics, this paper establishes a bond graph model. Two main variables, a set of inter-connectivities based on nodes and links (bonds) and a fractional order dynamical perspective, prove to be a good macro-economic representation of countries’ potential performance in nowadays globalization. The estimations based on time series for 50 countries throughout the last 50 decades confirm the accuracy of the model and the importance of scale for economic performance.
Resumo:
The calculation of fractional derivatives is an important topic in scientific research. While formal definitions are clear from the mathematical point of view, they pose limitations in applied sciences that have not been yet tackled. This paper addresses the problem of obtaining left and right side derivatives when adopting numerical approximations. The results reveal the relationship between the resulting distinct values for different fractional orders and types of signals.
Resumo:
This study addresses the deoxyribonucleic acid (DNA) and proposes a procedure based on the association of statistics, information theory, signal processing, Fourier analysis and fractional calculus for describing fundamental characteristics of the DNA. In a first phase the 24 chromosomes of the Human are evaluated. In a second phase, 10 chromosomes for different species are also processed and the results compared. The results reveal invariance in the description and close resemblances with fractional Brownian motion.
Resumo:
This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald–Letnikov, Riemann–Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
This paper studies the dynamics of the Rayleigh piston using the modeling tools of Fractional Calculus. Several numerical experiments examine the effect of distinct values of the parameters. The time responses are transformed into the Fourier domain and approximated by means of power law approximations. The description reveals characteristics usual in Fractional Brownian phenomena.