934 resultados para Rat-brain
Resumo:
OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.
Resumo:
Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 min postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n= 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295-treated injured animals showed significant neuromotor deficits (P< 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P< 0.01). However, brain-injured, AK295-treated animals showed markedly improved motor scores (P<0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P< 0.001), which was significantly attenuated by AK295 treatment (P< 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.
Resumo:
Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a member of the calcitonin gene-related peptide (CGRP) family. Using the rat focal stroke model of middle cerebral artery occlusion (MCAO), we determined that AM mRNA expression was significantly increased in the ischemic cortex up to 17.4-fold at 3 h post-MCAO (P < 0.05) and 21.7-fold at 6 h post-MCAO (P < 0.05) and remained elevated for up to 15 days (9.6-fold increase; P < 0.05). Immunohistochemical studies localized AM to ischemic neuronal processes, and radioligand (125I-labeled CGRP) displacement revealed high-affinity (IC50 = 80.3 nmol) binding of AM to CGRP receptors in brain cortex. The cerebrovascular function of AM was studied using synthetic AM microinjected onto rat pial vessels using a cranial window or applied to canine basilar arteries in vitro. AM, applied abluminally, produced dose-dependent relaxation of preconstricted pial vessels (P < 0.05). Intracerebroventricular (but not systemic) AM administration at a high dose (8 nmol), prior to and after MCAO, increased the degree of focal ischemic injury (P < 0.05). The ischemia-induced expression of both AM mRNA and peptide in ischemic cortical neurons, the demonstration of the direct vasodilating effects of the peptide on cerebral vessels, and the ability of AM to exacerbate ischemic brain damage suggests that AM plays a significant role in focal ischemic brain injury.
Resumo:
The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
Differences in the NMR detectability of 39K in various excised rat tissues (liver, brain, kidney, muscle, and testes) have been observed. The lowest NMR detectability occurs for liver (61 ± 3% of potassium as measured by flame photometry) and highest for erythrocytes (100 ± 7%). These differences in detectability correlate with differences in the measured 39K NMR relaxation constants in the same tissues. 39K detectabilities were also found to correlate inversely with the mitochondrial content of the tissues. Mitochondria prepared from liver showed greatly reduced 39K NMR detectability when compared with the tissue from which it was derived, 31.6 ± 9% of potassium measured by flame photometry compared to 61 ± 3%. The detectability of potassium in mitochondria was too low to enable the measurement of relaxation constants. This study indicates that differences in tissue structure, particularly mitochondrial content are important in determining 39K detectability and measured relaxation rates.
Resumo:
1. Both dietary magnesium depletion and potassium depletion (confirmed by tissue analysis) were induced in rats which were then compared with rats treated with chlorothiazide (250 mg/kg diet) and rats on a control synthetic diet. 2. Brain and muscle intracellular pH was measured by using a surface coil and [31P]-NMR to measure the chemical shift of inorganic phosphate. pH was also measured in isolated perfused hearts from control and magnesium-deficient rats. Intracellular magnesium status was assessed by measuring the chemical shift of β-ATP in brain. 3. There was no evidence for magnesium deficiency in the chlorothiazide-treated rats on tissue analysis or on chemical shift of β-ATP in brain. Both magnesium and potassium deficiency, but not chlorothiazide treatment, were associated with an extracellular alkalosis. 4. Magnesium deficiency led to an intracellular alkalosis in brain, muscle and heart. Chlorothiazide treatment led to an alkalosis in brain. Potassium deficiency was associated with a normal intracellular pH in brain and muscle. 5. Magnesium depletion and chlorothiazide treatment produce intracellular alkalosis by unknown mechanism(s).
Resumo:
Prior in vitro studies, utilizing 31Pn uclear magnetic resonance (31PN MR) to measure the chemical shift (CT) of 0-ATP and lengthening of the phosphocreatine spin-spin (7"') relaxation time, suggested an assessment of their efficacy in measuring magnesium depletion in vivo. Dietary magnesium depletion (Me$) produced markedly lower magnesium in plasma (0.44 vs 1. I3 mmol/liter) and bone (1 30 vs 190 pmol/g) but much smaller changes in muscle (41 vs 45 pmol/g, P < 0.01), heart (42.5 vs 44.6 prnol/g), and brain (30 vs 32 pmollg). NMR experiments in anesthetized rats in a Bruker 7-T vertical bore magnet showed that in M e $ rats there was a significant change in brain j3-ATP shift (16.15 vs 16.03 ppm, P < 0.05). These chemical shifts gave a calculated free [Mg"] of 0.71 mM (control) and 0.48 mM (MgZ+$). In muscle the change in j3-ATP shift was not significant (Me$ 15.99 ppm, controls 15.96 ppm), corresponding to a calculated free M P of 0.83 and 0.95 mM, respectively. Phosphccreatine Tz (Carr-Purcell, spin-echo pulse sequence) was no different with M e $ in muscle in vivo (surface coil) (M$+$ 136, control 142 ms) or in isolated perfused hearts (Helmholtz coil) (control 83, M e $ 92 ms). 3'P NMR is severely limited in its ability to detect dietary magnesium depletion in vivo. Measurement of j3-ATP shift in brain may allow studies of the effects of interaction in group studies but does not allow prediction of an individual magnesium status.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
Anxiety traits can be stable and permanent characteristics of an individual across time that is less susceptible of influences by a particular situation. One way to study trait anxiety in an experimental context is through the use of rat lines, selected according to contrasting phenotypes of fear and anxiety. It is not clear whether the behavioral differences between two contrasting rat lines in one given anxiety test are also present in others paradigms of state anxiety. Here, we examine the extent to which multiple anxiety traits generalize across selected animal lines originally selected for a single anxiety trait. We review the behavioral results available in the literature of eight rat genetic models of trait anxiety - namely Maudsley Reactive and Non-reactive rats, Floripa H and L rats, Tsukuba High and Low Emotional rats, High and Low Anxiety-related rats, High and Low Ultrasonic Vocalization rats, Roman High and Low Avoidance rats, Syracuse High and Low Avoidance rats, and Carioca High and Low Conditioned Freezing rats - across 11 behavioral paradigms of innate anxiety or aversive learning frequently used in the experimental setting. We observed both convergence and divergence of behavioral responses in these selected lines across the 11 paradigms. We find that predisposition for specific anxiety traits will usually be generalized to other anxiety provoking stimuli. However this generalization is not observed across all genetic models indicating some unique trait and state interactions. Genetic models of enhanced-anxiety related responses are beginning to help define how anxiety can manifest differently depending on the underlying traits and the current environmentally induced state.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes
Resumo:
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.