958 resultados para Process Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling phase is fundamental both in the analysis process of a dynamic system and the design of a control system. If this phase is in-line is even more critical and the only information of the system comes from input/output data. Some adaptation algorithms for fuzzy system based on extended Kalman filter are presented in this paper, which allows obtaining accurate models without renounce the computational efficiency that characterizes the Kalman filter, and allows its implementation in-line with the process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a tool to perform guided HAZOP studies using a functional modeling framework: D-higraphs. It is a formalism that gathers in a single model structural (ontological) and functional information about the process considered. In this paper it is applied to an industrial case showing that the proposed methodology fits its purposes and fulfills some of the gaps and drawbacks existing in previous reported HAZOP assistant tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new tool to perform guided HAZOP analyses. This tool uses a functional model of the process that merges its functional and its structural information in a natural way. The functional modeling technique used is called D-higraphs. This tool solves some of the problems and drawbacks of other existing methodologies for the automation of HAZOPs. The applicability and easy understanding of the proposed methodology is shown in an industrial case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A great challenge for future information technologies is building reliable systems on top of unreliable components. Parameters of modern and future technology devices are affected by severe levels of process variability and devices will degrade and even fail during the normal lifeDme of the chip due to aging mechanisms. These extreme levels of variability are caused by the high device miniaturizaDon and the random placement of individual atoms. Variability is considered a "red brick" by the InternaDonal Technology Roadmap for Semiconductors. The session is devoted to this topic presenDng research experiences from the Spanish Network on Variability called VARIABLES. In this session a talk entlited "Modeling sub-threshold slope and DIBL mismatch of sub-22nm FinFet" was presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, only few initiatives have been carried out in Spain in order to use mathematical models (e.g. DNDC, DayCent, FASSET y SIMSNIC) to estimate nitrogen (N) and carbon (C) dynamics as well as greenhouse gases (GHG) in Spanish agrosystems. Modeling at this level may allow to gain insight on both the complex relationships between biological and physicochemical processes, controlling the processes leading to GHG production and consumption in soils (e.g. nitrification, denitrification, decomposing, etc.), and the interactions between C and N cycles within the different components of the continuum plant-soil-environment. Additionally, these models can simulate the processes behind production, consumition and transport of GHG (e.g. nitrous oxide, N2O, and carbon dioxide, CO2) in the short and medium term and at different scales. Other sources of potential pollution from soils can be identified and quantified using these process-based models (e.g. NO3 y NH3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En los últimos años, el Ge ha ganado de nuevo atención con la finalidad de ser integrado en el seno de las existentes tecnologías de microelectrónica. Aunque no se le considera como un canddato capaz de reemplazar completamente al Si en el futuro próximo, probalemente servirá como un excelente complemento para aumentar las propiedades eléctricas en dispositivos futuros, especialmente debido a su alta movilidad de portadores. Esta integración requiere de un avance significativo del estado del arte en los procesos de fabricado. Técnicas de simulación, como los algoritmos de Monte Carlo cinético (KMC), proporcionan un ambiente atractivo para llevar a cabo investigación y desarrollo en este campo, especialmente en términos de costes en tiempo y financiación. En este estudio se han usado, por primera vez, técnicas de KMC con el fin entender el procesado “front-end” de Ge en su fabricación, específicamente la acumulación de dañado y amorfización producidas por implantación iónica y el crecimiento epitaxial en fase sólida (SPER) de las capas amorfizadas. Primero, simulaciones de aproximación de clisiones binarias (BCA) son usadas para calcular el dañado causado por cada ión. La evolución de este dañado en el tiempo se simula usando KMC sin red, o de objetos (OKMC) en el que sólamente se consideran los defectos. El SPER se simula a través de una aproximación KMC de red (LKMC), siendo capaz de seguir la evolución de los átomos de la red que forman la intercara amorfo/cristalina. Con el modelo de amorfización desarrollado a lo largo de este trabajo, implementado en un simulador multi-material, se pueden simular todos estos procesos. Ha sido posible entender la acumulación de dañado, desde la generación de defectos puntuales hasta la formación completa de capas amorfas. Esta acumulación ocurre en tres regímenes bien diferenciados, empezando con un ritmo lento de formación de regiones de dañado, seguido por una rápida relajación local de ciertas áreas en la fase amorfa donde ambas fases, amorfa y cristalina, coexisten, para terminar en la amorfización completa de capas extensas, donde satura el ritmo de acumulación. Dicha transición ocurre cuando la concentración de dañado supera cierto valor límite, el cual es independiente de las condiciones de implantación. Cuando se implantan los iones a temperaturas relativamente altas, el recocido dinámico cura el dañado previamente introducido y se establece una competición entre la generación de dañado y su disolución. Estos efectos se vuelven especialmente importantes para iones ligeros, como el B, el cual crea dañado más diluido, pequeño y distribuido de manera diferente que el causado por la implantación de iones más pesados, como el Ge. Esta descripción reproduce satisfactoriamente la cantidad de dañado y la extensión de las capas amorfas causadas por implantación iónica reportadas en la bibliografía. La velocidad de recristalización de la muestra previamente amorfizada depende fuertemente de la orientación del sustrato. El modelo LKMC presentado ha sido capaz de explicar estas diferencias entre orientaciones a través de un simple modelo, dominado por una única energía de activación y diferentes prefactores en las frecuencias de SPER dependiendo de las configuraciones de vecinos de los átomos que recristalizan. La formación de maclas aparece como una consecuencia de esta descripción, y es predominante en sustratos crecidos en la orientación (111)Ge. Este modelo es capaz de reproducir resultados experimentales para diferentes orientaciones, temperaturas y tiempos de evolución de la intercara amorfo/cristalina reportados por diferentes autores. Las parametrizaciones preliminares realizadas de los tensores de activación de tensiones son también capaces de proveer una buena correlación entre las simulaciones y los resultados experimentales de velocidad de SPER a diferentes temperaturas bajo una presión hidrostática aplicada. Los estudios presentados en esta tesis han ayudado a alcanzar un mejor entendimiento de los mecanismos de producción de dañado, su evolución, amorfización y SPER para Ge, además de servir como una útil herramienta para continuar el trabajo en este campo. In the recent years, Ge has regained attention to be integrated into existing microelectronic technologies. Even though it is not thought to be a feasible full replacement to Si in the near future, it will likely serve as an excellent complement to enhance electrical properties in future devices, specially due to its high carrier mobilities. This integration requires a significant upgrade of the state-of-the-art of regular manufacturing processes. Simulation techniques, such as kinetic Monte Carlo (KMC) algorithms, provide an appealing environment to research and innovation in the field, specially in terms of time and funding costs. In the present study, KMC techniques are used, for the first time, to understand Ge front-end processing, specifically damage accumulation and amorphization produced by ion implantation and Solid Phase Epitaxial Regrowth (SPER) of the amorphized layers. First, Binary Collision Approximation (BCA) simulations are used to calculate the damage caused by every ion. The evolution of this damage over time is simulated using non-lattice, or Object, KMC (OKMC) in which only defects are considered. SPER is simulated through a Lattice KMC (LKMC) approach, being able to follow the evolution of the lattice atoms forming the amorphous/crystalline interface. With the amorphization model developed in this work, implemented into a multi-material process simulator, all these processes can be simulated. It has been possible to understand damage accumulation, from point defect generation up to full amorphous layers formation. This accumulation occurs in three differentiated regimes, starting at a slow formation rate of the damage regions, followed by a fast local relaxation of areas into the amorphous phase where both crystalline and amorphous phases coexist, ending in full amorphization of extended layers, where the accumulation rate saturates. This transition occurs when the damage concentration overcomes a certain threshold value, which is independent of the implantation conditions. When implanting ions at relatively high temperatures, dynamic annealing takes place, healing the previously induced damage and establishing a competition between damage generation and its dissolution. These effects become specially important for light ions, as B, for which the created damage is more diluted, smaller and differently distributed than that caused by implanting heavier ions, as Ge. This description successfully reproduces damage quantity and extension of amorphous layers caused by means of ion implantation reported in the literature. Recrystallization velocity of the previously amorphized sample strongly depends on the substrate orientation. The presented LKMC model has been able to explain these differences between orientations through a simple model, dominated by one only activation energy and different prefactors for the SPER rates depending on the neighboring configuration of the recrystallizing atoms. Twin defects formation appears as a consequence of this description, and are predominant for (111)Ge oriented grown substrates. This model is able to reproduce experimental results for different orientations, temperatures and times of evolution of the amorphous/crystalline interface reported by different authors. Preliminary parameterizations for the activation strain tensors are able to also provide a good match between simulations and reported experimental results for SPER velocities at different temperatures under the appliance of hydrostatic pressure. The studies presented in this thesis have helped to achieve a greater understanding of damage generation, evolution, amorphization and SPER mechanisms in Ge, and also provide a useful tool to continue research in this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although much of the brain’s functional organization is genetically predetermined, it appears that some noninnate functions can come to depend on dedicated and segregated neural tissue. In this paper, we describe a series of experiments that have investigated the neural development and organization of one such noninnate function: letter recognition. Functional neuroimaging demonstrates that letter and digit recognition depend on different neural substrates in some literate adults. How could the processing of two stimulus categories that are distinguished solely by cultural conventions become segregated in the brain? One possibility is that correlation-based learning in the brain leads to a spatial organization in cortex that reflects the temporal and spatial clustering of letters with letters in the environment. Simulations confirm that environmental co-occurrence does indeed lead to spatial localization in a neural network that uses correlation-based learning. Furthermore, behavioral studies confirm one critical prediction of this co-occurrence hypothesis, namely, that subjects exposed to a visual environment in which letters and digits occur together rather than separately (postal workers who process letters and digits together in Canadian postal codes) do indeed show less behavioral evidence for segregated letter and digit processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which new technological knowledge flows across institutional and national boundaries is a question of great importance for public policy and the modeling of economic growth. In this paper we develop a model of the process generating subsequent citations to patents as a lens for viewing knowledge diffusion. We find that the probability of patent citation over time after a patent is granted fits well to a double-exponential function that can be interpreted as the mixture of diffusion and obsolescense functions. The results indicate that diffusion is geographically localized. Controlling for other factors, within-country citations are more numerous and come more quickly than those that cross country boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.