997 resultados para Predictive Monitoring
Resumo:
AbstractBackground:The recording of arrhythmic events (AE) in renal transplant candidates (RTCs) undergoing dialysis is limited by conventional electrocardiography. However, continuous cardiac rhythm monitoring seems to be more appropriate due to automatic detection of arrhythmia, but this method has not been used.Objective:We aimed to investigate the incidence and predictors of AE in RTCs using an implantable loop recorder (ILR).Methods:A prospective observational study conducted from June 2009 to January 2011 included 100 consecutive ambulatory RTCs who underwent ILR and were followed-up for at least 1 year. Multivariate logistic regression was applied to define predictors of AE.Results:During a mean follow-up of 424 ± 127 days, AE could be detected in 98% of patients, and 92% had more than one type of arrhythmia, with most considered potentially not serious. Sustained atrial tachycardia and atrial fibrillation occurred in 7% and 13% of patients, respectively, and bradyarrhythmia and non-sustained or sustained ventricular tachycardia (VT) occurred in 25% and 57%, respectively. There were 18 deaths, of which 7 were sudden cardiac events: 3 bradyarrhythmias, 1 ventricular fibrillation, 1 myocardial infarction, and 2 undetermined. The presence of a long QTc (odds ratio [OR] = 7.28; 95% confidence interval [CI], 2.01–26.35; p = 0.002), and the duration of the PR interval (OR = 1.05; 95% CI, 1.02–1.08; p < 0.001) were independently associated with bradyarrhythmias. Left ventricular dilatation (LVD) was independently associated with non-sustained VT (OR = 2.83; 95% CI, 1.01–7.96; p = 0.041).Conclusions:In medium-term follow-up of RTCs, ILR helped detect a high incidence of AE, most of which did not have clinical relevance. The PR interval and presence of long QTc were predictive of bradyarrhythmias, whereas LVD was predictive of non-sustained VT.
Resumo:
Abstract Casual blood pressure measurements have been extensively questioned over the last five decades. A significant percentage of patients have different blood pressure readings when examined in the office or outside it. For this reason, a change in the paradigm of the best manner to assess blood pressure has been observed. The method that has been most widely used is the Ambulatory Blood Pressure Monitoring - ABPM. The method allows recording blood pressure measures in 24 hours and evaluating various parameters such as mean BP, pressure loads, areas under the curve, variations between daytime and nighttime, pulse pressure variability etc. Blood pressure measurements obtained by ABPM are better correlated, for example, with the risks of hypertension. The main indications for ABPM are: suspected white coat hypertension and masked hypertension, evaluation of the efficacy of the antihypertensive therapy in 24 hours, and evaluation of symptoms. There is increasing evidence that the use of ABPM has contributed to the assessment of blood pressure behaviors, establishment of diagnoses, prognosis and the efficacy of antihypertensive therapy. There is no doubt that the study of 24-hour blood pressure behavior and its variations by ABPM has brought more light and less darkness to the field, which justifies the title of this review.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2012
Resumo:
This work presents the results of an investigation of processes in the melting zone during Electron Beam Welding(EBW) through analysis of the secondary current in the plasma.The studies show that the spectrum of the secondary emission signal during steel welding has a pronounced periodic component at a frequency of around 15–25 kHz. The signal contains quasi-periodic sharp peaks (impulses). These impulses have stochastically varying amplitude and follow each other inseries, at random intervals between series. The impulses have a considerable current (up to 0.5 A). It was established that during electron-beam welding with the focal spot scanning these impulses follow each other almost periodically. It was shown that the probability of occurrence of these high-frequency perturbation increases with the concentration of energy in the interaction zone. The paper also presents hypotheses for the mechanism of the formation of the high-frequency oscillations in the secondary current signal in the plasma.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
We analyze the optimal technology policy to solve a free-riding problem between the members of a RJV. We assume that when intervening the Government suffers an additional adverse selection problem because it is not able to distinguish the value of the potential innovation. Although subsidies and monitoring may be equivalent policy tools to solve firms' free-riding problem, they imply different social losses if the Government is not able to perfectly distinguish the value of the potential innovation. The supremacy of monitoring tools over subsidies is proved to depend on which type of information the Government is able to obtain about firms' R&D performance.
Resumo:
We analyze a model where firms chose a production technology which, together with some random event, determines the final emission level. We consider the coexistence of two alternative technologies: a "clean" technology, and a "dirty" technology. The environmental regulation is based on taxes over reported emissions, and on penalties over unreported emissions. We show that the optimal inspection policy is a cut-off strategy, for several scenarios concerning the observability of the adoption of the clean technology and the cost of adopting it. We also show that the optimal inspection policy induces the firm to adopt the clean technology if the adoption cost is not too high, but the cost levels for which the firm adopts it depend on the scenario.
Resumo:
Within last few years a new type of instruments called Terrestrial Laser Scanners (TLS) entered to the commercial market. These devices brought a possibility to obtain completely new type of spatial, three dimensional data describing the object of interest. TLS instruments are generating a type of data that needs a special treatment. Appearance of this technique made possible to monitor deformations of very large objects, like investigated here landslides, with new quality level. This change is visible especially with relation to the size and number of the details that can be observed with this new method. Taking into account this context presented here work is oriented on recognition and characterization of raw data received from the TLS instruments as well as processing phases, tools and techniques to do them. Main objective are definition and recognition of the problems related with usage of the TLS data, characterization of the quality single point generated by TLS, description and investigation of the TLS processing approach for landslides deformation measurements allowing to obtain 3D deformation characteristic and finally validation of the obtained results. The above objectives are based on the bibliography studies and research work followed by several experiments that will prove the conclusions.