812 resultados para Population data
Resumo:
The Northern Demersal Scalefish Fishery has historically comprised a small fleet (≤10 vessels year−1) operating over a relatively large area off the northwest coast of Australia. This multispecies fishery primarily harvests two species of snapper: goldband snapper, Pristipomoides multidens and red emperor, Lutjanus sebae. A key input to age-structured assessments of these stocks has been the annual time-series of the catch rate. We used an approach that combined Generalized Linear Models, spatio-temporal imputation, and computer-intensive methods to standardize the fishery catch rates and report uncertainty in the indices. These analyses, which represent one of the first attempts to standardize fish trap catch rates, were also augmented to gain additional insights into the effects of targeting, historical effort creep, and spatio-temporal resolution of catch and effort data on trap fishery dynamics. Results from monthly reported catches (i.e. 1993 on) were compared with those reported daily from more recently (i.e. 2008 on) enhanced catch and effort logbooks. Model effects of catches of one species on the catch rates of another became more conspicuous when the daily data were analysed and produced estimates with greater precision. The rate of putative effort creep estimated for standardized catch rates was much lower than estimated for nominal catch rates. These results therefore demonstrate how important additional insights into fishery and fish population dynamics can be elucidated from such “pre-assessment” analyses.
Resumo:
Marine species generally have large population sizes, continuous distributions and high dispersal capacity. Despite this, they are often subdivided into separate populations, which are the basic units of fisheries management. For example, populations of some fisheries species across the deep water of the Timor Trench are genetically different, inferring minimal movement and interbreeding. When connectivity is higher than the Timor Trench example, but not so high that the populations become one, connectivity between populations is crinkled. Crinkled connectivity occurs when migration is above the threshold required to link populations genetically, but below the threshold for demographic links. In future, genetic estimates of connectivity over crinkled links could be uniquely combined with other data, such as estimates of population size and tagging and tracking data, to quantify demographic connectedness between these types of populations. Elasmobranch species may be ideal targets for this research because connectivity between populations is more likely to be crinkled than for finfish species. Fisheries stock-assessment models could be strengthened with estimates of connectivity to improve the strategic and sustainable harvesting of biological resources.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.
Resumo:
Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes) may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.
Resumo:
Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.
Resumo:
Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.
Resumo:
Objectives: 1. Estimate population parameters required for a management model. These include survival, density, age structure, growth, age and size at maturity and at recruitment to the adult eel fishery. Estimate their variability among individuals in a range of habitats. 2. Develop a management population dynamics model and use it to investigate management options. 3. Establish baseline data and sustainability indicators for long-term monitoring. 4. Assess the applicability of the above techniques to other eel fisheries in Australia, in collaboration with NSW. Distribute developed tools via the Australia and New Zealand Eel Reference Group.
Resumo:
OBJECTIVE: Lower limb amputation is often associated with a high risk of early post-operative mortality. Mortality rates are also increasingly being put forward as a possible benchmark for surgical performance. The primary aim of this systematic review is to investigate early post-operative mortality following a major lower limb amputation in population/regional based studies, and reported factors that might influence these mortality outcomes. METHODS: Embase, PubMed, Cinahl and Psycinfo were searched for publications in any language on 30 day or in hospital mortality after major lower limb amputation in population/regional based studies. PRISMA guidelines were followed. A self developed checklist was used to assess quality and susceptibility to bias. Summary data were extracted for the percentage of the population who died; pooling of quantitative results was not possible because of methodological differences between studies. RESULTS: Of the 9,082 publications identified, results were included from 21. The percentage of the population undergoing amputation who died within 30 days ranged from 7% to 22%, the in hospital equivalent was 4-20%. Transfemoral amputation and older age were found to have a higher proportion of early post-operative mortality, compared with transtibial and younger age, respectively. Other patient factors or surgical treatment choices related to increased early post-operative mortality varied between studies. CONCLUSIONS: Early post-operative mortality rates vary from 4% to 22%. There are very limited data presented for patient related factors (age, comorbidities) that influence mortality. Even less is known about factors related to surgical treatment choices, being limited to amputation level. More information is needed to allow comparison across studies or for any benchmarking of acceptable mortality rates. Agreement is needed on key factors to be reported.
Resumo:
The ongoing climate change along with increasing levels of pollutants, diseases, habitat loss and fragmentation constitute global threats to the persistence of many populations, species and ecosystems. However, for the long-term persistence of local populations, one of the biggest threats is the intrinsic loss of genetic variation. In order to adapt to changes in the environment, organisms must have a sufficient supply of heritable variation in traits important for their fitness. With a loss of genetic variation, the risk of extinction will increase. For conservational practices, one should therefore understand the processes that shape the genetic population structure and also the broader (historical) phylogenetic patterning of the species in focus. In this thesis, microsatellite markers were applied to study genetic diversity and population differentiation of the protected moor frog (Rana arvalis) in Fennoscandia from both historical (evolutionary) and applied (conservation) perspectives. The results demonstrate that R. arvalis populations are highly structured over rather short geographic distances. Moreover, the results suggest that R. arvalis recolonized Fennoscandia from two directions after the last ice age. This has had implications for the genetic structuring and population differentiation, especially in the northernmost parts where the two lineages have met. Compared to more southern populations, the genetic variation decreases and the interpopulation differentiation increases dramatically towards north. This could be an outcome of serial population bottlenecking along the recolonization route. Also, current isolation and small population sizes increase the effect of drift, thus reinforcing the observed pattern. The same pattern can also be seen in island populations. However, though R. arvalis on the island of Gotland has lost most of its neutral genetic variability, our results indicate that the levels of additive genetic variation have remained high. This conforms to the conjecture that though neutral markers are widely used in conservation purposes, they may be quite uninformative about the levels of genetic variation in ecologically important traits. Finally, the evolutionary impact of the typical amphibian mating behaviour on genetic diversity was investigated. Given the short time available for larval development, it is important that mating takes place as early as possible. The genetic data and earlier capture-recapture data suggest that R. arvalis gather at mating grounds they are familiar with. However, by forming leks in random to relatedness, and having multiple paternities in single clutches, the risk of inbreeding may be minimized in this otherwise highly philopatric species.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.