882 resultados para Planning decision support systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today s highly competitive and global marketplace the pressure onorganizations to find new ways to create and deliver value to customersgrows ever stronger. In the last two decades, logistics and supply chainhas moved to the center stage. There has been a growing recognition thatit is through an effective management of the logistics function and thesupply chain that the goal of cost reduction and service enhancement canbe achieved. The key to success in Supply Chain Management (SCM) requireheavy emphasis on integration of activities, cooperation, coordination andinformation sharing throughout the entire supply chain, from suppliers tocustomers. To be able to respond to the challenge of integration there isthe need of sophisticated decision support systems based on powerfulmathematical models and solution techniques, together with the advancesin information and communication technologies. The industry and the academiahave become increasingly interested in SCM to be able to respond to theproblems and issues posed by the changes in the logistics and supply chain.We present a brief discussion on the important issues in SCM. We then arguethat metaheuristics can play an important role in solving complex supplychain related problems derived by the importance of designing and managingthe entire supply chain as a single entity. We will focus specially on theIterated Local Search, Tabu Search and Scatter Search as the ones, but notlimited to, with great potential to be used on solving the SCM relatedproblems. We will present briefly some successful applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a low-cost microprocessed instrument for in situ evaluating soil temperature profile ranging from -20.0°C to 99.9°C, and recording soil temperature data at eight depths from 2 to 128 cm. Of great importance in agriculture, soil temperature affects plant growth directly, and nutrient uptake as well as indirectly in soil water and gas flow, soil structure and nutrient availability. The developed instrument has potential applications in the soil science, when temperature monitoring is required. Results show that the instrument with its individual sensors guarantees ±0.25°C accuracy and 0.1°C resolution, making possible localized management changes within decision support systems. The instrument, based on complementary metal oxide semiconductor devices as well as thermocouples, operates in either automatic or non-automatic mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Exposure to combination antiretroviral therapy (cART) can lead to important metabolic changes and increased risk of coronary heart disease (CHD). Computerized clinical decision support systems have been advocated to improve the management of patients at risk for CHD but it is unclear whether such systems reduce patients' risk for CHD. METHODS: We conducted a cluster trial within the Swiss HIV Cohort Study (SHCS) of HIV-infected patients, aged 18 years or older, not pregnant and receiving cART for >3 months. We randomized 165 physicians to either guidelines for CHD risk factor management alone or guidelines plus CHD risk profiles. Risk profiles included the Framingham risk score, CHD drug prescriptions and CHD events based on biannual assessments, and were continuously updated by the SHCS data centre and integrated into patient charts by study nurses. Outcome measures were total cholesterol, systolic and diastolic blood pressure and Framingham risk score. RESULTS: A total of 3,266 patients (80% of those eligible) had a final assessment of the primary outcome at least 12 months after the start of the trial. Mean (95% confidence interval) patient differences where physicians received CHD risk profiles and guidelines, rather than guidelines alone, were total cholesterol -0.02 mmol/l (-0.09-0.06), systolic blood pressure -0.4 mmHg (-1.6-0.8), diastolic blood pressure -0.4 mmHg (-1.5-0.7) and Framingham 10-year risk score -0.2% (-0.5-0.1). CONCLUSIONS: Systemic computerized routine provision of CHD risk profiles in addition to guidelines does not significantly improve risk factors for CHD in patients on cART.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the intense international competition, demanding, and sophisticated customers, and diverse transforming technological change, organizations need to renew their products and services by allocating resources on research and development (R&D). Managing R&D is complex, but vital for many organizations to survive in the dynamic, turbulent environment. Thus, the increased interest among decision-makers towards finding the right performance measures for R&D is understandable. The measures or evaluation methods of R&D performance can be utilized for multiple purposes; for strategic control, for justifying the existence of R&D, for providing information and improving activities, as well as for the purposes of motivating and benchmarking. The earlier research in the field of R&D performance analysis has generally focused on either the activities and considerable factors and dimensions - e.g. strategic perspectives, purposes of measurement, levels of analysis, types of R&D or phases of R&D process - prior to the selection of R&Dperformance measures, or on proposed principles or actual implementation of theselection or design processes of R&D performance measures or measurement systems. This study aims at integrating the consideration of essential factors anddimensions of R&D performance analysis to developed selection processes of R&D measures, which have been applied in real-world organizations. The earlier models for corporate performance measurement that can be found in the literature, are to some extent adaptable also to the development of measurement systemsand selecting the measures in R&D activities. However, it is necessary to emphasize the special aspects related to the measurement of R&D performance in a way that make the development of new approaches for especially R&D performance measure selection necessary: First, the special characteristics of R&D - such as the long time lag between the inputs and outcomes, as well as the overall complexity and difficult coordination of activities - influence the R&D performance analysis problems, such as the need for more systematic, objective, balanced and multi-dimensional approaches for R&D measure selection, as well as the incompatibility of R&D measurement systems to other corporate measurement systems and vice versa. Secondly, the above-mentioned characteristics and challenges bring forth the significance of the influencing factors and dimensions that need to be recognized in order to derive the selection criteria for measures and choose the right R&D metrics, which is the most crucial step in the measurement system development process. The main purpose of this study is to support the management and control of the research and development activities of organizations by increasing the understanding of R&D performance analysis, clarifying the main factors related to the selection of R&D measures and by providing novel types of approaches and methods for systematizing the whole strategy- and business-based selection and development process of R&D indicators.The final aim of the research is to support the management in their decision making of R&D with suitable, systematically chosen measures or evaluation methods of R&D performance. Thus, the emphasis in most sub-areas of the present research has been on the promotion of the selection and development process of R&D indicators with the help of the different tools and decision support systems, i.e. the research has normative features through providing guidelines by novel types of approaches. The gathering of data and conducting case studies in metal and electronic industry companies, in the information and communications technology (ICT) sector, and in non-profit organizations helped us to formulate a comprehensive picture of the main challenges of R&D performance analysis in different organizations, which is essential, as recognition of the most importantproblem areas is a very crucial element in the constructive research approach utilized in this study. Multiple practical benefits regarding the defined problemareas could be found in the various constructed approaches presented in this dissertation: 1) the selection of R&D measures became more systematic when compared to the empirical analysis, as it was common that there were no systematic approaches utilized in the studied organizations earlier; 2) the evaluation methods or measures of R&D chosen with the help of the developed approaches can be more directly utilized in the decision-making, because of the thorough consideration of the purpose of measurement, as well as other dimensions of measurement; 3) more balance to the set of R&D measures was desired and gained throughthe holistic approaches to the selection processes; and 4) more objectivity wasgained through organizing the selection processes, as the earlier systems were considered subjective in many organizations. Scientifically, this dissertation aims to make a contribution to the present body of knowledge of R&D performance analysis by facilitating dealing with the versatility and challenges of R&D performance analysis, as well as the factors and dimensions influencing the selection of R&D performance measures, and by integrating these aspects to the developed novel types of approaches, methods and tools in the selection processes of R&D measures, applied in real-world organizations. In the whole research, facilitation of dealing with the versatility and challenges in R&D performance analysis, as well as the factors and dimensions influencing the R&D performance measure selection are strongly integrated with the constructed approaches. Thus, the research meets the above-mentioned purposes and objectives of the dissertation from the scientific as well as from the practical point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of mobile telephony began in 1971 in Finland, when the first car phones, called ARP1 were taken to use. Technologies changed from ARP to NMT and later to GSM. The main application of the technology, however, was voice transfer. The birth of the Internet created an open public data network and easy access to other types of computer-based services over networks. Telephones had been used as modems, but the development of the cellular technologies enabled automatic access from mobile phones to Internet. Also other wireless technologies, for instance Wireless LANs, were also introduced. Telephony had developed from analog to digital in fixed networks and allowed easy integration of fixed and mobile networks. This development opened a completely new functionality to computers and mobile phones. It also initiated the merger of the information technology (IT) and telecommunication (TC) industries. Despite the arising opportunity for firms' new competition the applications based on the new functionality were rare. Furthermore, technology development combined with innovation can be disruptive to industries. This research focuses on the new technology's impact on competition in the ICT industry through understanding the strategic needs and alternative futures of the industry's customers. The change speed inthe ICT industry is high and therefore it was valuable to integrate the DynamicCapability view of the firm in this research. Dynamic capabilities are an application of the Resource-Based View (RBV) of the firm. As is stated in the literature, strategic positioning complements RBV. This theoretical framework leads theresearch to focus on three areas: customer strategic innovation and business model development, external future analysis, and process development combining these two. The theoretical contribution of the research is in the development of methodology integrating theories of the RBV, dynamic capabilities and strategic positioning. The research approach has been constructive due to the actual managerial problems initiating the study. The requirement for iterative and innovative progress in the research supported the chosen research approach. The study applies known methods in product development, for instance, innovation process in theGroup Decision Support Systems (GDSS) laboratory and Quality Function Deployment (QFD), and combines them with known strategy analysis tools like industry analysis and scenario method. As the main result, the thesis presents the strategic innovation process, where new business concepts are used to describe the alternative resource configurations and scenarios as alternative competitive environments, which can be a new way for firms to achieve competitive advantage in high-velocity markets. In addition to the strategic innovation process as a result, thestudy has also resulted in approximately 250 new innovations for the participating firms, reduced technology uncertainty and helped strategic infrastructural decisions in the firms, and produced a knowledge-bank including data from 43 ICT and 19 paper industry firms between the years 1999 - 2004. The methods presentedin this research are also applicable to other industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Operatiivisen tiedon tuottaminen loppukäyttäjille analyyttistä tarkastelua silmällä pitäen aiheuttaa ongelmia useille yrityksille. Diplomityö pyrkii ratkaisemaan ko. ongelman Teleste Oyj:ssä. Työ on jaettu kolmeen pääkappaleeseen. Kappale 2 selkiyttää On-Line Analytical Processing (OLAP)- käsitteen. Kappale 3 esittelee muutamia OLAP-tuotteiden valmistajia ja heidän arkkitehtuurejaan sekä tyypillisten sovellusalueiden lisäksi huomioon otettavia asioita OLAP käyttöönoton yhteydessä. Kappale 4, tuo esille varsinaisen ratkaisun. Teknisellä arkkitehtuurilla on merkittävä asema ratkaisun rakenteen kannalta. Tässä on sovellettu Microsoft:n tietovarasto kehysrakennetta. Kappaleen 4 edetessä, tapahtumakäsittelytieto muutetaan informaatioksi ja edelleen loppukäyttäjien tiedoksi. Loppukäyttäjät varustetaan tehokkaalla ja tosiaikaisella analysointityökalulla moniulotteisessa ympäristössä. Vaikka kiertonopeus otetaan työssä sovellusesimerkiksi, työ ei pyri löytämään optimaalista tasoa Telesten varastoille. Siitä huolimatta eräitä parannusehdotuksia mainitaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravenous thrombolysis (IVT) as treatment in acute ischaemic strokes may be insufficient to achieve recanalisation in certain patients. Predicting probability of non-recanalisation after IVT may have the potential to influence patient selection to more aggressive management strategies. We aimed at deriving and internally validating a predictive score for post-thrombolytic non-recanalisation, using clinical and radiological variables. In thrombolysis registries from four Swiss academic stroke centres (Lausanne, Bern, Basel and Geneva), patients were selected with large arterial occlusion on acute imaging and with repeated arterial assessment at 24 hours. Based on a logistic regression analysis, an integer-based score for each covariate of the fitted multivariate model was generated. Performance of integer-based predictive model was assessed by bootstrapping available data and cross validation (delete-d method). In 599 thrombolysed strokes, five variables were identified as independent predictors of absence of recanalisation: Acute glucose > 7 mmol/l (A), significant extracranial vessel STenosis (ST), decreased Range of visual fields (R), large Arterial occlusion (A) and decreased Level of consciousness (L). All variables were weighted 1, except for (L) which obtained 2 points based on β-coefficients on the logistic scale. ASTRAL-R scores 0, 3 and 6 corresponded to non-recanalisation probabilities of 18, 44 and 74 % respectively. Predictive ability showed AUC of 0.66 (95 %CI, 0.61-0.70) when using bootstrap and 0.66 (0.63-0.68) when using delete-d cross validation. In conclusion, the 5-item ASTRAL-R score moderately predicts non-recanalisation at 24 hours in thrombolysed ischaemic strokes. If its performance can be confirmed by external validation and its clinical usefulness can be proven, the score may influence patient selection for more aggressive revascularisation strategies in routine clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tavoitteena oli antaa tietoa tehdasalueiden turvallisuuteen vaikuttavista tekijöistä ja luoda malli tehdasalueen liikenteen turvallisuuden parantamiseen päätöksenteon tukivälineitä apuna käyttäen. Työ sai alkunsa todellisen turvallisuutta parantavan investoinnin analysointi-tarpeesta. Aluksi työssä perehdytään yleisesti tehdasalueiden turvallisuuteen tarkastelemalla työturvallisuuden, riskienhallinnan ja turvallisuusjohtamisen asemaa, mittaamista ja taloudellisia vaikutuksia yrityksen toiminnalle. Yleiskatsaus tehdasalueiden turvallisuuteen antaa kuvan, millaiseen toimintaympäristöön turvallisuutta parantavaa mallia ollaan kehittämässä. Malli koostuu viidestä vaiheesta, joita voidaan käyttää kokonaisuutena tai toisistaan erillään. Ensin selvitään tutkittavan alueen kulkuväylät ja liikenne sekä mallinnetaan se. Tämän jälkeen kartoitetaan ongelmakohdat ja etsitään sopivia vaihtoehtoja niiden turvallisuuden parantamiseksi. Vaihtoehtoja analysoidaan SWOT-menetelmän avulla. Turvallisuutta parantavien investointien arvioimiseen esitetään muutamia mittareita, joita voidaan käyttää hankintojen arvioimiseen. Viimeisessä vaiheessa tutustutaan päätöksenteon tukisysteemeihin ja esitetään tietokoneavusteinen päätöksentekomenetelmä AHP. Käytännön soveltaminen on esitetty esimerkein mallin eri vaiheiden yhteydessä.Malli on tarkoitettu suunnittelijoiden, johdon ja työsuojelun työkaluksi, jonka avulla voidaan parantaa tehdasympäristön liikenteen tehokkuutta ja turvallisuutta sekä tutustuttaa käyttäjä päätöksentekomenetelmiin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on valita sopiva lämmitysjärjestelmä case taloon käyttäen apuna päätöksentekoprosessia ja eri vaiheissa sovellettavia menetelmiä. Työn avulla pyritään selvittämään kuinka hyvin päätöksentekomenetelmät sopivat lämmitysjärjestelmän valintaan ja mitä hyötyjä se tuo tullessaan. Prosessissa selvitetään lämmitysjärjestelmiin liittyviä asiakastarpeita, arvioidaan lämmitysjärjestelmien ominaisuuksia ja tehdään valinta näiden tietojen pohjalta. Kymmenhenkinen kuluttajaryhmä teki lopullisen päätöksen valittavasta lämmitysjärjestelmästä. Menetelmien avulla saatiin luotua kattava kuva erilaisista asiakastarpeista, jotka otettiin huomioon valinnassa. Ryhmä valitsi case taloon seitsemästä yleisestä lämmitysjärjestelmästä maalämmön. Työssä käytetyt menetelmät toimivat hyvin yhteistyössä toistensa kanssa. Menetelmien käyttö mahdollisti kaikkien kriteereiden huomioimisen ja tuloksien lähemmän tarkastelun. Työssä saatuja tuloksia voidaan hyödyntää lämmitysjärjestelmän valinnassa ottaen huomioon erilaiset lähtötilanteet. Herkkyysanalyyseissa maalämpö kesti monien kriteerien painotuksien muuttamista ja osoittautui tällä tavoin sopivimmaksi järjestelmäksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This monograph dissertation looks into the field of ICT-mediated health and well-being services. Through six chapters that extend the work done in the reviewed and published articles, the dissertation focuses on new and emerging technologies, and to impact of their use on the beneficiary; the individual who eventually derives advantage from the services. As the field is currently going through major changes particularly in the OECD countries, the focus is on shortterm developments in the field and the analysis on the long term developments is cursory by nature. The dissertation includes theoretical and empirical elements. Most of the empirical elements are linked to product development and conceptualization performed in the national MyWellbeing project that ended in 2010. In the project, the emphasis was on conceptualization of a personal aid for the beneficiary that could be used for managing information and services in the field of health and well-being services. This work continued the theme of developing individual-centric solutions for the field; a work that started in the InnoElli Senior program in 2006. The nature of this thesis is foremost a conceptual elaboration based on a literature review, illustrated in empirical work performed in different projects. As a theoretical contribution, this dissertation elaborates the role of a mediator, i.e. an intermediary, and it is used as an overarching theme. The role acts as a ‘lens’ through which a number of technology-related phenomena are looked at, pinned down and addressed to a degree. This includes introduction of solutions, ranging from anthropomorphic artefacts to decision support systems that may change the way individuals experience clinical encounters in the near-future. Due to the complex and multiform nature of the field, it is impractical and effectively impossible to cover all aspects that are related to mediation in a single work. Issues such as legislation, financing and privacy are all of equal importance. Consideration of all these issues is beyond the scope of this dissertation and their investigation is left to other work. It follows from this that the investigation on the role is not intended as inclusive one. The role of the mediator is also used to highlight some of the ethical issues related to personal health information management, and to mediating health and well-being related issues on behalf of another individual, such as an elderly relative or a fellow member of a small unit in the armed forces. The dissertation concludes in a summary about the use and functions of the mediator, describing some potential avenues for implementing such support mechanisms to the changing field of ICT-mediated health and well-being services. The conclusions also describe some of the limitations of this dissertation, including remarks on methodology and content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liiketoiminta-analytiikka on yksi yritysten suorituskyvyn johtamisen osa-alue, joka on viime aikoina noussut vahvasti esille yritysten kilpailuedun mahdollistavana avaintekijänä. Tämän tutkimuksen tavoitteena oli kartoittaa yritysten liiketoiminta-analytiikan nykytila ja tarpeet Suomessa. Tutkimus on luonteeltaan kvalitatiivinen vertaileva tutkimus. Tutkimuksen empiirinen aineisto kerättiin kahden menetelmän yhdistelmänä. Liiketoiminta-analytiikan hyödyntämisessä edistyneempien yrityksien asiantuntijoille toteutettiin haastattelut. Lisäksi toteutettiin sähköpostitse lomakemuotoinen kyselytutkimus, jotta saavutettaisiin kattavampi näkemys analytiikan markkinoista. Tutkimuksessa on kartoitettu, miten Suomessa ymmärretään liiketoiminta- analytiikan käsite eri yrityksien analytiikan asiantuntijoiden toimesta, sekä minkälaisissa päätöksentekotilanteissa liiketoiminta-analytiikkaa hyödynnetään ja minkälaisilla tavoilla. Lisäksi on selvitetty, miten liiketoiminta-analytiikan kehittämistä ja analytiikan kyvykkyyksiä hallitaan yrityksissä. Liiketoiminta-analytiikka on Suomessa tietyillä toimialoilla erittäin kehittynyttä, mutta yleisesti ollaan jäljessä alan edelläkävijöitä ja esimerkiksi Ruotsia. Liiketoiminta-analytiikan hyödyntäminen ja tarpeet ovat pitkälti kohdistuneet päätöksentekotilanteisiin, joissa yritys kohtaa asiakkaansa. Suurin yksittäinen este liiketoiminta-analytiikan hyödyntämiselle on resurssi- ja osaamisvaje.